
158

Consistency Maintenance in Distributed Cloud
Storage Systems
Ha Huy Cuong Nguyen, Tung Trong Nguyen, Trung Hai Trinh

University of Da Nang, Danang, Vietnam, nhhcuong@cit.udn.vn, tungqn@donga.edu.vn,
tthai@cit.udu.vn

*Correspondence:
Ha Huy Cuong Nguyen,

University of Danang, Viet
Nam,

nhhcuong@cit.udn.vn

Abstract
In this era, several organizations are storing their data on cloud
storage to meet the requirements of efficient operation like stability,
scalability, and availability of services. Data replication services in
cloud storage systems are there to improve performance. In this
context, the requirements for ensuring data consistency became
increasingly important. In this paper, we propose a virtual server
solution for updating replication, efficiently resolving resources,
detecting, preventing deadlocks at the data center. In this
manuscript, we have shown that the proposed solution yields the
results for the schema, which ensures consistent data on costs and
latency. In this paper, we use the Open Stack tool, which incorporates
a proposed algorithm Balancing Consistency Availability On System
Physical Machine, for maintaining data consistency in Cloud Storage
Systems.

Keyword: Virtual machine, best-effort, distributed environments,
Cloud Storage Systems, maintaining data consistency, Cloud
computing

1. Introduction
Cloud Storage Systems are widely used because of their highly efficient response

to distributed systems. The increasing size of the data is the main concern of our
society. To maintain the storage file efficiently, we have focused on this manuscript. To
minimize the time dispersed by the user, the cloud allows easy deployment of services
to develop applications as required by users based on separate physical data centers.
Data replication is an effective service (response time data, high availability of data,
system performance) of the system storage applications in Cloud environments. The
reason is that users can go directly to the copy in data centers (Data Center - DC)
nearest copy center at the other (an example is shown below) However, data centers
have problems such as load balancing, fault tolerance, redundancy, or lack of system
resources (memory, processing).

Moreover, there are many replicas (R1, R2. . .) at the physical data centers (Figure
1) will make it more difficult to ensure data consistency. Therefore, in recent times,
solutions using virtual servers are interested in research, application. That built on the
physical server platform can overcome these problems, thus improving the efficiency
of the scheme to ensure data consistency. Each solution to these problems by virtual

Azerbaijan Journal of High Performance Computing, Vol. 2, Issue 2, 2019, pp. 158-169
https://doi.org/10.32010/26166127.2019.2.2.158.169

159

servers can be considered as an approach to improve an efficiency consistency
maintenance scheme for cloud storage systems. We use virtual server solutions to
ensure data consistency by Amazon Dynamo (Vishnumurthy, & Francis, 2006, April).
Dynamo’s partitioning scheme relies on a variety of consistent hashing. In their scheme,
the resulting range or space of a hash function is considered as a ring. Every member
of the ring is a virtual node (host) where a physical node may be responsible for one or
more virtual nodes. The introduction of virtual nodes, instead of using fixed physical
nodes on the ring, is a choice that provides better availability and loads balancing
under failures. Each data item can be assigned to a node on the ring based on its key.
The hashed value of the key determines its position on the ring. Data then is assigned
to the closest node on the ring clockwise.

Moreover, data is replicated on the successive K 1 nodes for a given replication
factor K, avoiding virtual nodes that belong to the same physical nodes. All the nodes
on Dynamo are considered equal and can compute the reference list for any given key.
The reference list is the list of nodes that store a copy of data referenced by the key.
Dynamo is an eventually-consistent system. Updates are asynchronously propagated
to replicas. However, in this paper, we propose solutions for virtual servers to work
more efficiently, thereby improving the efficiency of the schema to ensure consistent
data. Specifically, with the method for predicting the distributed systems with the least
completion time, which is used to make a complex commercial decision in resource
allocation and scheduling. The methods of detecting deadlock using two-way search
algorithms can improve the efficiency and effectiveness of resource allocation in the
heterogeneous platform. In this manuscript, the authors propose a novel solution that
uses virtual servers to update the replicas. Specific contributions are:

1) It is a related resource allocation solution that enables detection and handling
deadlocks for virtual servers.

2) Conduct experiments and compares them to prove the effectiveness of the new
proposal.

The work is organized in the following way: in part 2, we have introduced the related
works and background study. In section 3, we initiated the existing models; Section 4
deals with the solutions for the distribution of heterogeneous resources in the distributor,
in Section 5, we have represented the results from our evaluation. Section 6 deals with
the result analysis. This section concludes with the comments and suggestions for
future work.

2. Related works
This section deals with the related study and background work. The problem of

partitioning web- link graph for web ranking in P2P is formulated as a minimal cut-
set with density balanced partitioning (Rowstron & Druschel, 2001, November). The
problem is proved to be an NP-Hard by reducing to the minimum bisection problem
(Li, Xie & Li, 2008; Li, Xie, & Li, (2008).). In P2P based Page Rank (Adami, Gabbrielli,
Giordano, Pagano, & Portaluri, 2015, December), each computational peer contains a
local web- link graph, and its PageRank is computed locally. P2P is a viable choice to
address such limitations. To be able to compute the global ranking, a special node, so-
called word-node, is constructed to store the link page information of the other peers.

Azerbaijan Journal of High Performance Computing, 2 (2), 2019

160

Nassermostofi (2016). moves forward for authentication between familiar peers in P2P
networking systems. A secure environment can only be achieved when peers are sure
that they are communicating with the desired partner. There are two classes of P2P
overlay networks: Structured and Unstructured. In structured P2P, strong consistency
is provided by organizing heterogeneous nodes to an auxiliary structure on top of the
overlay for updating propagation. Examples include the tree structure in SCOPE, the
two-tiered structure in Ocean-Store, a hybrid of the tree, and a two-tiered structure.
Nakashima, T., & Fujita, S. (2013, December) proposed an approach to building a tree
by recursively selecting a representative and partitioning method. With this method,
it supports only to store information of the tree structure in their subspace for all the
intermediate nodes. So, the method becomes very difficult to update tree structure,
and it can not be interested in the object are in the object’s update dissemination tree.
When we update the system applications with different problems, the process adds
unnecessary overhead, which is being created while maintaining the tree from node
failures. The systems cannot check error from heterogeneous nodes when increasing
message request update (Pang, Wang & Zhang, 2013). The method is meant for
constructing the tree structure dissemination by only involving heterogeneous nodes.
In this paper, authors are interested in method maintenance and update propagation.
Hence, the problem also efficiently builds the tree structure dissemination and binary
tree decomposition. In this paper, in order to make it balanced and robust, the methods
statistically optimized will be proposed in section 4. Vivek presented two types of
bounded consistency that are provided with rumor spreading and replica chain.
They have used this approach to ensure a certain probability of a new version that is
being received in unstructured P2P systems. The probability is tuned by adjusting the
redundancy degree in propagating an update to maintain the balance between the
communications overhead with the consistency strictness. The message broadcast is
an unstructured byte array that is delivered to all members of the group through the
method probabilistic bounded consistency. In the previous work (Adami, Gabbrielli,
Giordano, Pagano & Portaluri, 2015, December), the proposed method to be the
best algorithm for constructing unstructured P2P graphs suitable for heterogeneous
random selection. Here is a brief overview of other unstructured approaches. Adami,
Gabbrielli, Giordano, Pagano & Portaluri. (2015, December) extends SCOPE by
making both graph construction and query- resolution sensitive to node capacities.
High-capacity nodes have higher degrees and are more likely to be traversed by
random walks. While Swap links share these two features with GIA, Swaplinks exhibits
more accurate control over the degree and probability of selection. Other examples of
unstructured graph construction schemes include Araneola, an approach by Law and
Siu, and Jianming Fu et al. None of these take node heterogeneity into account. The
described mechanism by Jin, Ibrahim, Bell, Qi, Cao, Wu & Shi (2010) can be used as
a random node selection primitive, but as was the case with the previously mentioned
schemes, it does not take into account node heterogeneity.

In P2P systems, to avoid conflict relocation decisions in sequential nodes, it will
contact the cached ancestors. With the method, the systems P2P in distributed
systems are to retrieve the lost packets. The proposed model by Bermbach &
Kuhlenkamp (2013, May) is described for consistency maintenance. Moreover, in

Nguyen et al.

161

mentioned resource, it is extended by a consistency model for P2P applications. The
used methods are a hybrid of push and pull, maintaining consistency. By Addition,
they have also used to provide application tailored cache consistency, although each
node can specify its consistency requirement. Proposed by Pang Wang & Zhang
(2013) the model makes each node perform the strongest consistency maintenance
from all its descendant nodes in the overlay replica hierarchy. The methods presented
are meant for maintaining consistency at a node which cannot be reduced even.
Therefore, we can see that most of the papers have not focused on the case study of
strong consistency. In this paper, we have shown the solution methodology to update
consistency in this above context.

3. Resource allocation in heterogeneous distributed platforms
In computing servers, several hardware and software resources are available for

being configured. Hence allocation of resources should be in an efficient manner so
that we may optimally utilize the resources. Resource allocation: Over the years, the
model of cloud computing has drawn the attention of researchers Cloud users around
the world. Cloud computing presents a model of resource allocation other than grid
or scheduling. Especially, Amazon C2 is capable of allocating smaller computing
resources, rather than a few, large requirements. The emergence of heterogeneity
allows clouds to compete with traditional distributed computing systems, which often
include many different architectures.

No same with the distribution system traditional, we can see a system does not even
include files that are too connected by a network transport. Slow delays in transactions
are a limit but not guess before.

Example 1 Many replica in CLOUD STORAGE SYSTEMS
We have used the platform graph for the grid platform. We model a collection of

heterogeneous resources as the nodes and the communication links between them as
the edges of an undirected graph. See an example in Figure 2 with a simple platform
on Industry 4.0. Industry 4.0 is indispensable are the following virtual machines provide
services. Customers here are farmers who have the farms they may need to store data,
retrieve data. A process can be in two states:

Running or blocked. In the running state (also called active state), a process has all
the needed resources and is either executing or is ready for execution. In the blocked
state, a process is waiting to acquire some resources.

Fig. 1: Many replicas in CLOUD STORAGE SYSTEMS

Azerbaijan Journal of High Performance Computing, 2 (2), 2019

162

Example 2 A requirement of data consistency
The Industrial Revolution Fourth widespread impact breakthroughs in technology in

all fields such as artificial intelligence, big data, Robotics, IoT.
The prospect of the development of education in the context of the Industrial

Revolution for the fourth time, Vietnam will certainly face many difficulties in education
we are still too heavy on the transmission of knowledge without looking to expand the
quality and capacity of the learners; quality teaching staff, management staff has been
uneven; information technology infrastructure is limited.

With the influx of new learning models and the development of science and
technology, the methods of traditional education will certainly be challenging. Each
student needs and different learning abilities. Advances in technology allowed the
school can design individual learning pathways to suit each particular case. The
educational software was put into use with the ability to adapt to the capabilities of
each student and allow students with speeds matching the needs of the self.

Within the scope of the study, the author refers to the technology infrastructure
solutions to solve the whole distribution of resources, avoid deadlock learners’ area
concurrent access to the system.

Resources allocation for virtual servers on the data consistency maintenance

Fig. 2: A requirement of data consistency

Algorithm 1 Requests resources with best-effort
Input: Pj(CPU)*, P j(RAM)*

from IaaS provider i;
Output: new resource rCPU

(n+1) , rRAM
(n+1) ;

BEGIN
Operation request resource (ri) in the critical section is
csstatei ←− trying; lrdi ←− clocki + 1; for each j ∈ Ri do
if (usedbyi[j] =0) the send request (lrdi,i) to pj end for;
senttoi [j] ←− true;
usedbyi[j] ←− R
else senttoi[j] ←−false
end if end for;
usedbyi[i] ki;
 n
wait(usedbyi[j] NPM);
 j=1
csstatei ←− in;
Operation release resource (ri) in the critical section is
csstatei ←− out;
for each j ∈ permdelayedi do send permission(i,j) to pj end for;
Ri ← permdelayedi; permdelayedi ← ø END.

Algorithm 2 Balancing Consistency Availability On System Physical Machine
Input: Pj(CPU)*, P j(RAM)*

from IaaS provider i;
Output: new resource rCPU

(n+1) , rRAM
(n+1)

;
BEGIN
When REQUEST(k,j) is received from pj do
clocki ← max(clocki,n);
prioi ← (csstatei = in) ∨ ((csstatei = trying)
∧ ((lrdi,i) ¡ (n,j)));
if (prioi) then send NOTUSED(NPM) to pj
else if(ni
NPM) then send NOTUSED(NPM - ni) to pj end if
permdelayedi ← permdelayedi ∪j
end if.
When permission(i,j) is received from pj do
NPMi ← NPMi \ j;
When NOTUSED(x) is received from pj do
usedbyi[j] ← usedbyi[j] -x;
if ((csstatei = trying) ∧ (usedbyi[j] = 0) ∧ (notsenttoi[j])
then send REQUEST(lrdi,i) to pj senttoi[j] ← true;
usedbyi[j] ← NPM;
end if.
END.

Nguyen et al.

.

163

As presented above, ensuring data consistency, the virtual servers are responsible
for propagating updates to replicas. In addition, the virtual server is responsible for
processing any other requests from the user. Inside, the scale system is not stable,
the heterogeneous user: the ability to process, bandwidth usage, the churn rate, the
update rate. So, resource allocation (RAM, CPU) for the virtual server is very important.
They need to be appropriate.

Moreover, solving other problems as deadlock will improve the efficiency of the
virtual server in the consistency maintenance scheme. In the cloud computing model,
as introduced above, the resources provided are gathered in so many complicated
steps. The development of a solution to prevent deadlock needs to ensure that at least
one of the following conditions cannot occur.

In the cloud computing model, as introduced above, the resources provided are
gathered in so many complicated steps. The development of a solution to prevent
deadlock need to ensure that at least one of the following conditions cannot occur:
Resources cannot be shared, occupied, and the additional resources required, no
recovery resources, existence of any cycle or not.

Virtual host distribution on the physical node at a time point. To define the distribution

Algorithm 1 Requests resources with best-effort
Input: Pj(CPU)*, P j(RAM)*

from IaaS provider i;
Output: new resource rCPU

(n+1) , rRAM
(n+1) ;

BEGIN
Operation request resource (ri) in the critical section is
csstatei ←− trying; lrdi ←− clocki + 1; for each j ∈ Ri do
if (usedbyi[j] =0) the send request (lrdi,i) to pj end for;
senttoi [j] ←− true;
usedbyi[j] ←− R
else senttoi[j] ←−false
end if end for;
usedbyi[i] ki;
 n
wait(usedbyi[j] NPM);
 j=1
csstatei ←− in;
Operation release resource (ri) in the critical section is
csstatei ←− out;
for each j ∈ permdelayedi do send permission(i,j) to pj end for;
Ri ← permdelayedi; permdelayedi ← ø END.

Algorithm 2 Balancing Consistency Availability On System Physical Machine
Input: Pj(CPU)*, P j(RAM)*

from IaaS provider i;
Output: new resource rCPU

(n+1) , rRAM
(n+1)

;
BEGIN
When REQUEST(k,j) is received from pj do
clocki ← max(clocki,n);
prioi ← (csstatei = in) ∨ ((csstatei = trying)
∧ ((lrdi,i) ¡ (n,j)));
if (prioi) then send NOTUSED(NPM) to pj
else if(ni
NPM) then send NOTUSED(NPM - ni) to pj end if
permdelayedi ← permdelayedi ∪j
end if.
When permission(i,j) is received from pj do
NPMi ← NPMi \ j;
When NOTUSED(x) is received from pj do
usedbyi[j] ← usedbyi[j] -x;
if ((csstatei = trying) ∧ (usedbyi[j] = 0) ∧ (notsenttoi[j])
then send REQUEST(lrdi,i) to pj senttoi[j] ← true;
usedbyi[j] ← NPM;
end if.
END.

Algorithm 1 Requests resources with best-effort
Input: Pj(CPU)*, P j(RAM)*

from IaaS provider i;
Output: new resource rCPU

(n+1) , rRAM
(n+1) ;

BEGIN
Operation request resource (ri) in the critical section is
csstatei ←− trying; lrdi ←− clocki + 1; for each j ∈ Ri do
if (usedbyi[j] =0) the send request (lrdi,i) to pj end for;
senttoi [j] ←− true;
usedbyi[j] ←− R
else senttoi[j] ←−false
end if end for;
usedbyi[i] ki;
 n
wait(usedbyi[j] NPM);
 j=1
csstatei ←− in;
Operation release resource (ri) in the critical section is
csstatei ←− out;
for each j ∈ permdelayedi do send permission(i,j) to pj end for;
Ri ← permdelayedi; permdelayedi ← ø END.

Algorithm 2 Balancing Consistency Availability On System Physical Machine
Input: Pj(CPU)*, P j(RAM)*

from IaaS provider i;
Output: new resource rCPU

(n+1) , rRAM
(n+1)

;
BEGIN
When REQUEST(k,j) is received from pj do
clocki ← max(clocki,n);
prioi ← (csstatei = in) ∨ ((csstatei = trying)
∧ ((lrdi,i) ¡ (n,j)));
if (prioi) then send NOTUSED(NPM) to pj
else if(ni
NPM) then send NOTUSED(NPM - ni) to pj end if
permdelayedi ← permdelayedi ∪j
end if.
When permission(i,j) is received from pj do
NPMi ← NPMi \ j;
When NOTUSED(x) is received from pj do
usedbyi[j] ← usedbyi[j] -x;
if ((csstatei = trying) ∧ (usedbyi[j] = 0) ∧ (notsenttoi[j])
then send REQUEST(lrdi,i) to pj senttoi[j] ← true;
usedbyi[j] ← NPM;
end if.
END.

Azerbaijan Journal of High Performance Computing, 2 (2), 2019

.

164

Algorithm 1 Requests resources with best-effort
Input: Pj(CPU)*, P j(RAM)*

from IaaS provider i;
Output: new resource rCPU

(n+1) , rRAM
(n+1) ;

BEGIN
Operation request resource (ri) in the critical section is
csstatei ←− trying; lrdi ←− clocki + 1; for each j ∈ Ri do
if (usedbyi[j] =0) the send request (lrdi,i) to pj end for;
senttoi [j] ←− true;
usedbyi[j] ←− R
else senttoi[j] ←−false
end if end for;
usedbyi[i] ki;
 n
wait(usedbyi[j] NPM);
 j=1
csstatei ←− in;
Operation release resource (ri) in the critical section is
csstatei ←− out;
for each j ∈ permdelayedi do send permission(i,j) to pj end for;
Ri ← permdelayedi; permdelayedi ← ø END.

Algorithm 2 Balancing Consistency Availability On System Physical Machine
Input: Pj(CPU)*, P j(RAM)*

from IaaS provider i;
Output: new resource rCPU

(n+1) , rRAM
(n+1)

;
BEGIN
When REQUEST(k,j) is received from pj do
clocki ← max(clocki,n);
prioi ← (csstatei = in) ∨ ((csstatei = trying)
∧ ((lrdi,i) ¡ (n,j)));
if (prioi) then send NOTUSED(NPM) to pj
else if(ni
NPM) then send NOTUSED(NPM - ni) to pj end if
permdelayedi ← permdelayedi ∪j
end if.
When permission(i,j) is received from pj do
NPMi ← NPMi \ j;
When NOTUSED(x) is received from pj do
usedbyi[j] ← usedbyi[j] -x;
if ((csstatei = trying) ∧ (usedbyi[j] = 0) ∧ (notsenttoi[j])
then send REQUEST(lrdi,i) to pj senttoi[j] ← true;
usedbyi[j] ← NPM;
end if.
END.
 of all of a virtual host on the physical nodes in the time required, starting from time t and
drag long d seconds is very difficult. When combine and force the best algorithm 2,
we got the previous time, and the algorithm used to provide the resource in the shared
environment because they do not be up the calendar and require the best.

When the nodes have been sorted, the model uses the best-effort algorithm to
distribute all VM’s.

The algorithm mentioned above can distribute multiple VM’s on the same node.
With this research, we are aiming to provide efficient distribution of resources; we
have proposed the following technique in distributed environments. In this case, the
algorithm tries to distribute as many VM’s as possible on multiple physical nodes.

A. Resources Allocation for virtual servers on the data consistency maintenance

In this paper, the practical implications dictate that designers opt for best-effort
availability, thus guaranteeing consistency and greedy consistency for systems that
must guarantee availability. With a pragmatic way to handle the tradeoff is by balancing
consistency availability tradeoff in systems.

Then we process the research for the rating to provide the resource, which can be
a CPU hardware. In the future, we will the progress of the virtualization as the storage
drive, compatibility, and time complete when sending a contract. p, percentage of
the CPU used by a requested. (Value of p can be 10%, 20%, 30%, 40%, and 100%

Fig. 3: Example problem instance with two nodes and one service, showing possible
resource allocations

Nguyen et al.

165

because the percentage of CPU for using the greedy algorithm is calculated as
approximately 89.20%).

VM, the number of nodes required. These are approximate as follows: small (40),
medium (60), large (80). With the above two parameters, the research team determined
the times to collect the results of the time when it requires to use the greedy algorithm
within 1 lease contract in 1 DC and the time when the deadlock detection algorithm
detected on deadlocks.

Result analysis
This section deals with result analysis and discussion. In this way, the solution

includes two steps: Firstly, the Creation of a structured tree; Secondly, checking if
the cycle exists in that tree. In the first step, multicast to be used in dDT algorithm
construction in order to send the request to on the nodes in the systems and waiting
for replies from them. After this process, we obtain a tree. In the second step, another
algorithm to be used in order to detect a cycle. However, this algorithm has not been
mentioned in this paper.

Through Table 1, they apply algorithm request resource with the ability to provide
resources for a lease (as long as the capacity of the CPU is predetermined), we
recognize that the ratio between the rent Defective and successful creation of virtual

Fig. 4: Example problem instance with two nodes and one service, showing possible
resource allocations.

Azerbaijan Journal of High Performance Computing, 2 (2), 2019

166

machines is the same. With the CPU of 70%, we can see that the difference between
these ratios is greater, with the failure of 88% and the success of 65, 6%.

In traditional distributed storage and cloud computing systems, the instinctive and
correct way to handle replicas consistency was to ensure a strong consistency state

Table 1: Comparison average time a contract ends with greedy algorithm, together with the
cpu usage at local Environment

Ability VM
NOSR

VM
SR

VM ID Start
Time

Start
time

End
time

10% 30,56 40,72 20,5 0.1 10 22.22%
20% 40,09 45,21 22,3 0.1 10 20.00%
30% 45,30 45,48 23,18 0.1 32 27.27%
40% 47,54 45,45 24,34 0.1 45 43.75%
50% 45,56 46,01 30,14 0.1 40 39.39%
60% 46,18 47,01 40,01 0.1 20 36.05%
70% 47,02 47,09 43,09 0.1 35 42.86%
80% 48,08 47,56 45,23 0.1 48 44.44%
90% 49,02 48,56 45,67 0.1 60 50.55%

100% 56,78 50,06 60,78 0.1 90 64.86%

Fig. 5: Graph showing the ability of CPU to each lease contract with the best-effort
algorithm.

Nguyen et al.

167

of all replicas in the systems all the time. Through Table 2, to provide resources for 10
lease contracts (given the condition that the ability of CPU is predetermined), we found
that the success rate to create VM is very high, with the CPU’s ability at 20%. As for
CPU’s ability at 40% and 60%, the success creation is also higher than that of failure
creation.

We compare our algorithms with algorithms greedy with detecting and eventual
balancing consistency. The first tolerable status success create virtual machine rate 70

Conclusion

Fig. 6: Time contract graph with the ability of each CPU to provide virtual server
creation resources.

Table 2: Mean attenuation limit with more experiments
Ability VM

NOSR
VM
SR

VM ID Start
Time

Start
time

End
time

10% 50,56 60,72 20,5 0.1 5 22.22%
20% 60,09 75,21 22,3 0.1 10 20.00%
30% 65,30 75,48 23,18 0.1 12 27.27%
40% 67,54 75,45 24,34 0.1 15 43.75%
50% 75,56 76,01 30,14 0.1 20 39.39%
60% 76,18 77,01 40,01 0.1 23 36.05%
70% 77,02 77,09 43,09 0.1 25 42.86%
80% 88,08 78,56 45,23 0.1 28 44.44%
90% 89,02 78,56 45,67 0.1 30 50.55%
100% 96,78 80,06 60,78 0.1 35 64.86%

Azerbaijan Journal of High Performance Computing, 2 (2), 2019

168

Fig. 7: Graph showing lease contract completion time for each CPU capability in
distributed environments, using the deadlock detection algorithm.

In the content of the article, we provide an Open Stack virtual server solution. The
solution concerns the readiness criteria because it affects the cost of preparing the
infrastructure. Virtualization solutions based on Open Stack have great potential to
meet the needs of the users in the context of complex and sophisticated intelligent
computing systems.

Using a virtual machine is an effective solution that ensures consistent data
replication of Cloud Storage Systems. In this paper, the team proposed solutions to
improve the performance of virtual servers in allocating system resources, algorithms
to prevent, handle deadlock. Experimental results indicate that new proposals are
effective. Main issues, the ability to adjust resources can positively impact each user’s
needs, the solution to ensure quality standards, ensure sufficient resources, storage
space, support policies Use when demand increases or decreases. Standalone
independence also improves on open resource standards, based on physical server
resources.

We have also conducted experiments in distributed environments, some peer-
to-peer distributed applications with the ability of data centers to change. Based on
empirical evaluation criteria, we propose to bring some positive results.

When observing a comparative assessment between the ability to create a VM as
required, or reject a request to create a VM as the other VMs can not be suspended,
or stop the CPU in the Data Center.

Through this research, we found that adopting Open Stack based virtual server
solutions delivers optimal performance for the distributed resources of specially
adapted virtual machine systems. Provide virtual servers for high tech applications in
intelligent farming.

Acknowledgment
The article was conducted with support from the scientific research project code

182.CNTT02 / HD- DHCN.

Nguyen et al.

169

References
Jin, H., Ibrahim, S., Bell, T., Qi, L., Cao, H., Wu, S., & Shi, X. (2010). Tools and tech-

nologies for building clouds. In Cloud Computing (pp. 3-20). Springer, London.
Shen, H., Liu, G., & Chandler, H. (2015). Swarm intelligence based file replication

and consistency maintenance in structured P2P file sharing systems. IEEE Transac-
tions on Computers, 64(10), 2953-2967.

Li, Z., Xie, G., & Li, Z. (2008). Efficient and scalable consistency maintenance for
heterogeneous peer-to-peer systems. IEEE Transactions on Parallel and Distributed
Systems, 19(12), 1695-1708.

Nassermostofi, F. (2016). Toward authentication between familiar Peers in P2P net-
working systems. In Proceeding of the 9th GI Conference Autonomous Systems (pp.
88-103).

Pang, X., Wang, C., & Zhang, Y. (2013). A new P2P identity authentication method
based on zero-knowledge under hybrid P2P network. TELKOMNIKA Indones. J. Electr.
Eng, 11(10), 6187-6192.

Adami, D., Gabbrielli, A., Giordano, S., Pagano, M., & Portaluri, G. (2015, Decem-
ber). A fuzzy logic approach for resources allocation in cloud data center. In 2015 IEEE
Globecom Workshops (GC Wkshps) (pp. 1-6). IEEE.

Zhao, B. Y., Huang, L., Stribling, J., Rhea, S. C., Joseph, A. D., & Kubiatowicz, J. D.
(2004). Tapestry: A resilient global-scale overlay for service deployment. IEEE Journal
on selected areas in communications, 22(1), 41-53.

Rowstron, A., & Druschel, P. (2001, November). Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems. In IFIP/ACM Inter-
national Conference on Distributed Systems Platforms and Open Distributed Process-
ing (pp. 329-350). Springer, Berlin, Heidelberg.

Chen, X., Ren, S., & Wang, H. (2005, March). SCOPE: Scalable consistency main-
tenance in structured P2P systems. In Proceedings IEEE 24th Annual Joint Conference
of the IEEE Computer and Communications Societies. (Vol. 3, pp. 1502-1513). IEEE.

Vishnumurthy, V., & Francis, P. (2006, April). On heterogeneous overlay construc-
tion and random node selection in unstructured p2p networks. In Proceedings IEEE IN-
FOCOM 2006. 25TH IEEE International Conference on Computer Communications (pp.
1-12). IEEE.

Bermbach, D., & Kuhlenkamp, J. (2013, May). Consistency in distributed storage
systems. In International Conference on Networked Systems (pp. 175-189). Springer,
Berlin, Heidelberg.

Nakashima, T., & Fujita, S. (2013, December). Tree-based consistency mainte-
nance scheme for peer-to-peer file sharing systems. In 2013 First International Sympo-
sium on Computing and Networking (pp. 187-193). IEEE.

Submitted 25.09.2019
Accepted 16.11.2019

Azerbaijan Journal of High Performance Computing, 2 (2), 2019

