
178

The Oscillation Model of Load Flow of Global 
Activities in a Fully Distributed Exascale System
Ulphat Bakhishov
Azerbaijan State Oil and Industry University, Baku, Azerbaijan, ulfet_bakhishoff@hotmil.com

*Correspondence: 
Ulphat Bakhishov, 

Azerbaijan State Oil 
and Industry University, 
Baku, Azerbaijan, ulfet_
bakhishoff@hotmil.com

Abstract 
Exascale systems are the concept of HPC systems that able to 
perform one exaflop (1018 floating-point operations) per second 
in a dynamic and interactive environment. As the traditional HPC 
systems, the major challenge of this system is load balancing. 
Providing load balancing in dynamic and interactive nature re-
quires a model which handles dynamic and interactive events 
and allows to manage load distribution over the system. It strong-
ly depends on the distribution degree of the system. This paper 
defined a new model of load flow while imbalance occurred in the 
node of a fully distributed Exascale system. 

Keyword: Distributed Exascale Computing system, Load 
Balancing, Dynamic and Interactive Nature, Load distribution 
model

Azerbaijan Journal of High Performance Computing, Vol. 2, Issue 2, 2019, pp. 178-182
https://doi.org/10.32010/26166127.2019.2.2.178.182

1. Introduction
The main difference between Exascale systems from traditional HPC systems 

is handling natural events in a dynamic and interactive environment (Mirtaheri & 
Grandinetti, 2017). The dynamic and interactive environment is an environment of 
Exascale applications such as human brain simulation, space weather simulation, 
computational fluid engineering etc. (Eicker), where while designing the system, it 
is impossible to design a model for all possible events and their requirements.

On the other hand, as said in (Dongarra et al., 2011), “The first challenge at such 
a large scale is to provide efficient, scalable, resilient, and transparent access to 
the external (concerning the data center) and distributed (from a geographical 
point of view) data repositories.” That is why the system should manage resources 
in runtime while changing resource attributes and process requirements. For re-
source management architecture, the system can be centralized, hierarchical or 
decentralized (Wang, Brandstatter, & Raicu, 2013). A centralized workload man-
agement architecture is inefficient for large-scaled and geographically distributed 
systems (Khaneghah et al., 2018; (Wang et al., 2013). On the other hand, collecting 
or sharing the actual state of the system and particular nodes is needed for fully 
distributed systems as there are not any central repository for this type of informa-
tion (Sharifi, Mirtaheri, & Khaneghah, 2010).

For overcoming imbalance that occurred in a fully distributed Exascale system, 
either each node should be informed about the current status of the system, or 
each node should resolve imbalance that occurred in it in such a way that this op-



179

eration should not create an extra imbalance in another node.
In the first case, for informing nodes with actual information about the current 

status of the system, there is a necessity for additional resources and time. Taking 
into account that the dynamic and interactive event may have occurred in Exascale 
while this time, the information shared around the nodes loses its actuality. Accord-
ing to this, it is necessary to re-share the information about the current status of the 
system is needed. Solving this problem requires an additional resource, which is 
practically impossible to perform.

In the second case, it should be considered that the system may be built from 
geographically dispersed nodes that are connected by the network with different 
topologies and containing resources in a different architecture. In this situation, if 
each node resolves only is own imbalance with a custom way without considering 
others, it may increase the dynamicity of events in the Exascale system. However, 
if each node resolves imbalance that occurred in it, in the same way as others, it 
may be possible to model the load flow of global activities and optimize this model 
for minimizing response time.

2. Related Works
2.1. Load distribution strategies
For the different load balancing policies, a load of the global activity may be 

assigned to a single node time – one-time policy or it may be reassigned (Mirtaheri 
& Grandinetti, 2017; Bakhishoff, 2018; Sharma et al., 2008). In a one-time policy, 
the task should be solved only by the node which is assigned. However, if reassign-
ment is available, a process may be reassigned to another node until it executed. 
As a process, it is considered the smallest collection of commands which cannot 
be parallelized. 

Load distribution strategies are categorized into sender-initiated and receiv-
er-initiated strategies (Mirtaheri & Grandinetti, 2017). In a sender-initiated strate-
gy, imbalance occurred node raises global activities (Balasangameshwara & Raju, 
2013). However, in receiver-initiated strategy lightly loaded nodes look for over-
loaded nodes for receiving the load to process (Fairuzullah et al., 2019; Domanal 
& Reddy, 2015, November; (Kumar & Kumar, 2019). In this strategy, nodes should 
be informed about other nodes’ current status or it should check them one by one 
if they are overloaded. For this reason, this strategy considered significantly cost 
in huge distributed systems (Balasangameshwara & Raju, 2013; Fairuzullah et al., 
2019).

2.2. Resource management models
For the resource management model for P2P systems proposed by Wang et al. 

(2013), the system does not need any exact centroids. However, it needs dynamic 
controllers and regions created at runtime, which provide hierarchical workload 
management. This model based on the supply and demand model, so the same 
node can be in role client and server at the same time from different aspects. As 
the server, this machine stores and shares the current state of the system. For this 
purpose, they use resources which specially allocated for this reason, called Oa-

Azerbaijan Journal of High Performance Computing, 2 (2), 2019



180

sis. The main shortcoming of this model is sharing a large amount of metadata over 
the nodes which need to be kept actual.

Another approach proposed diffusive load balancing algorithms by (Lieber, 
2016, September) - these algorithms based on a graph model. The main advantage 
of these models versus the model proposed by Wang et al. (2013) is that they re-
quire communication between neighbor nodes only. It applies to scalable systems. 
However, there need rules to recalculate coefficients while dynamic and interactive 
events occurred in Exascale systems.

3. Proposed model
 This paper proposed a sender initiated and reassignment available load flow 

model for a fully distributed Exascale system. It is considered that each node has 
information only about its neighbors. If node overloaded, it distributes the extra 
load between its neighbors equally. In a simple case, it is considered a system that 
has two nodes. If one node overloaded, all extra load of it will be transferred to its 
neighbor. At the same time, if the neighbor node would not be able to process these 
global activities, it will return all extra loads. In that situation, a harmonic oscillation 
occurs. The time of returning sent load to back is the period of this oscillation. This 
period depends on network bandwidth and a load of global activities. If processing 
power is considered, the current load of the node will decrease over time and it will 
be able to process a piece of the extra load that is sent to it. In this case, the extra 
load will disappear over time and this situation is damped oscillation. The damp-
ing coefficient of this oscillation depends on the processing powers of nodes in 
communication. If this rule considered in complex structured systems, each node 
would distribute global activities currently in it between neighbors equally. At the 
same time, this process can happen in each neighbor if it is overloaded. However, 
global activities assigned to the underloaded machine will be processed and will 
not be reassigned. As a result of this, total global activities will be reduced. In other 
words, the oscillation will stop over time. This model indicates that flow of all global 
activities is directed to underloaded machines.

3.1. Considering dynamic and interactive events in the proposed model
In Exascale systems can be occurred following types of dynamic and interactive 

events (Eicker, N; Khaneghah & Sharifi, 2014):
• The process can fork a new process
• The process can communicate with another process
• The process can interact with the system environment
When a fork occurs, if the requirements of the new process can not be mapped 

to resource attributes, then it is marked as global activity and is assigned to one 
of the neighbors of the current node while distributing all global activities on the 
current node. This assignment starts oscillation. This oscillation can be critically 
damped if the assigned node can process it, or can continue several periods oth-
erwise. However, over time, as the result of executions of processes in nodes, this 
oscillation will stop.

When one process communicates with another one, these are not able to ex-

Ulphat Bakhishov



181

ecuted parallelly. Taking into account that, a distribution made only for parallel 
processes, these communicated processes should consider as one process. In 
this case, if this process creates an extra load, it should be marked as a new global 
activity and should be resolved as global activities created during the fork.

When one process interacts with the environment, its requirements change un-
intentionally. In this case, it can be considered as a new process with new require-
ments that are forked, and the old process is finished. In this case, creation and 
handling global activities is as same as it occurred during the fork. 

4. Conclusion
This model provides the flow of extra load directed to capable machines, with-

out considering where they are created. However, the load may be transferred to 
the capable machine without an optimal direction. For example, if one node has 
five neighbors and only one of them is capable, each time load distributed between 
neighbors, a portion of it will reduce and another portion of it will return. This load 
will be distributed again and again until fully reduced. However, the total load is 
not assigned to the capable machine directly. That is why it should be controlled 
the direction of the flow by optimizing the model. At the same time, it should be 
calculated parameters of oscillation dependent on resource attributes and process 
requirements.

Another problem is fault tolerance. So, if when some machine goes down or 
moves from the system, the processes assigned to this machine and are currently 
executing in it should be marked as global activities and should not be lost.

References
Bakhishoff, U. (2018). Applying Multiple Multidimensional Knapsack Problem to 

Dynamic Load Balancing in Distributed Exascale computing environment. Azerbaijan 
Journal of High Performance Computing, 1(2), 214-218.

Balasangameshwara, J., & Raju, N. (2013). Performance-Driven Load Balancing 
with a Primary-Backup Approach for Computational Grids with Low Communica-
tion Cost and Replication Cost. Ieee Transactions on Computers, 62(5), 990-1003. 
doi:10.1109/tc.2012.44

Dharmik, R. C., & Sathe, S. R. (2018). A Sender Initiated Dynamic and Decentral-
ized Load Balancing algorithm for Computational Grid Environment Using Variable 
CPU Usage. International Journal of Applied Engineering Research, 13(1), 189-194.

Domanal, S. G., & Reddy, G. R. M. (2015, November). Load balancing in cloud en-
vironment using a novel hybrid scheduling algorithm. In 2015 IEEE International Con-
ference on Cloud Computing in Emerging Markets (CCEM) (pp. 37-42). IEEE.

Dongarra, J., Beckman, P., Moore, T., Aerts, P., Aloisio, G., Andre, J. C., Yelick, K. 
(2011). The International Exascale Software Project roadmap. International Journal of High 
Performance Computing Applications, 25(1), 3-60. doi:10.1177/1094342010391989

Eicker, N. The DEEP Project. 
Fairuzullah, A., Noraziah, A., Arshah, R. A., & Herawan, T. (2019). Optimize Per-

Azerbaijan Journal of High Performance Computing, 2 (2), 2019



182

formance Load Balancing Techniques Using Binary Vote Assignment Grid Quorum 
(BVAGQ): A Systematic Review. In Proceedings of the International Conference on 
Data Engineering 2015 (DaEng-2015) (pp. 31-39). Springer, Singapore.

Khaneghah, E. M., Mollasalehi, F., Aliev, A. R., Ismayilova, N., & Bakhishoff, U. 
(2018). Challenges of Load Balancing to Support Distributed Exascale Computing 
Environment. In Proceedings of the International Conference on Parallel and Distrib-
uted Processing Techniques and Applications (PDPTA) (pp. 100-106). The Steering 
Committee of The World Congress in Computer Science, Computer Engineering and 
Applied Computing (WorldComp). 

Khaneghah, E. M., & Sharifi, M. (2014). AMRC: an algebraic model for reconfigura-
tion of high performance cluster computing systems at runtime. Journal of Supercom-
puting, 67(1), 1-30. doi:10.1007/s11227-013-0982-z

Kumar, P., & Kumar, R. (2019). Issues and Challenges of Load Balancing 
Techniques in Cloud Computing: A Survey. Acm Computing Surveys, 51(6), 35. 
doi:10.1145/3281010

Lieber, M., Goebner, K., & Nagel, W. E. (2016, September). The potential of diffu-
sive load balancing at large scale. In Proceedings of the 23rd European MPI Users’ 
Group Meeting (pp. 154-157). ACM.

Mirtaheri, S. L., & Grandinetti, L. (2017). Dynamic load balancing in distributed ex-
ascale computing systems. Cluster Computing-the Journal of Networks Software Tools 
and Applications, 20(4), 3677-3689. doi:10.1007/s10586-017-0902-8

Rathore, N., & Chana, I. (2013, September). A sender initiate based hierar-
chical load balancing technique for grid using variable threshold value. In 2013 
IEEE International Conference on Signal Processing, Computing and Control (ISP-
CC) (pp. 1-6). IEEE.

Sharifi, M., Mirtaheri, S. L., & Khaneghah, E. M. (2010). A dynamic framework for 
integrated management of all types of resources in P2P systems. Journal of Supercom-
puting, 52(2), 149-170. doi:10.1007/s11227-009-0281-x

Sharma, S., Singh, S., & Sharma, M. (2008). Performance analysis of load balancing 
algorithms. World Academy of Science, Engineering and Technology, 38(3), 269-272.

Wang, K., Brandstatter, K., & Raicu, I. (2013). SimMatrix: SIMulator for MAny-Task 
computing execution fabRIc at eXascale. High Performance Computing Symposium 
2013 (Hpc 2013) - 2013 Spring Simulation Multi-Conference (Springsim’13), 45(6), 66-
74. 

Submitted 07.07.2019
Accepted 30.11.2019

Ulphat Bakhishov


