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Abstract
Brain tumor segmentation intends to delineate tumor tissues 
from healthy brain tissues. The tumor tissues include necrosis, 
peritumoral edema, and active tumor. In contrast, healthy brain 
tissues include white matter, gray matter, and cerebrospinal 
fluid. The MRI based brain tumor segmentation research is 
gaining popularity as; 1. It does not irradiate ionized radiation 
like X-ray or computed tomography imaging. 2. It produces 
detailed pictures of internal body structures. The MRI scans 
are input to deep learning-based approaches that are useful 
for automatic brain tumor segmentation. The features from 
segments are fed to the classifier, which predicts the overall 
survival of the patient. This paper aims to give an extensive 
overview of the state-of-the-art, jointly covering brain tumor 
segmentation and overall survival prediction.
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1. Introduction
A brain tumor is an accumulation of abnormal cells in the brain. Usually, the cells 

of the body are replaced by new cells after the period. However, tumor cells do not 
die and continue to add more cancerous cells to accumulated cancerous tissue. 
Nowadays, mainly all medical organizations follow the World Health Organization(WHO) 
classification standards to recognize types of brain tumors. The WHO classifies them 
based on the origin of cancerous cells or through the behavior of cancerous cells. It 
categorizes cancerous cells into different grades, ranging from Grade I to Grade IV, 
based on the growth rate of cancerous cells. Grade I is the least malignant tumor, and 
Grade IV is the most malignant tumor.

1.1. Classification of brain tumor
The brain tumor is classified based on either the cancerous cells’ origin or cell 

behavior. The following subsections cover their classification.
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1.1.1. Brain tumors based on the origin of the cancerous cells
In a primary brain tumor, the genesis of cancerous cells lies in the brain, and it does 

not escalate to different body parts. Secondary brain tumors grow in the different parts of 
the body, and cancerous cells migrate to the brain. Lung, kidney, breast, skin, and colon 
are the most common organs from which the cancerous cells can spread to the brain. 
They are also known as metastatic brain tumors. 

1.1.2. Tumors based on cell behavior
Benign brain tumors are the least invasive type of brain tumor, and they are 

noncancerous cells. Typically, benign tumors grow at a low pace and do not invade 
other neighboring tissues. Malignant brain tumors range from noninvasive type to most 
invasive type. Based on the growth rates, different cancerous cells can invade proximate 
healthy brain tissue. The most common type of primary brain tumor found in adults is 
Glioblastomas, also called Glioblastoma multiforme (GBM). Glioblastomas are a fast-
growing type that grows from glial cells. High-grade gliomas (HGG) have a higher 
proliferation rate than low-grade gliomas(LGG), and hence they need intense clinical 
treatment plans.

Most patients with GBMs die in less than a year, and virtually none has long-term 
survival chances. These tumors have drawn enormous attention from the research 
community; for early detection and therapeutic planning of the patient. It can improve 
the survival tenure of the patient. Also, due to high variability in appearance, shape, and 
locations in the brain, segmentation in multimodal MRI scans is one of the most critical 
tasks in biomedical imaging areas. The MRI gives detailed anatomical information of the 
brain in all three planes; axial, sagittal, and coronal (cf. Fig. 1). It is useful in diagnosing 
a tumor, treatment plans, aid surgery, and after therapy planning.

Fig. 1. Brain anatomy in axial, sagittal, and coronal planes (Preston, D., 2006).

1.2. Types of MRI sequences 
Different types of MRI sequences are; 1. T1 weighted (T1); 2. T2 weighted MRI 

(T2); 3. Gd-enhanced T1-weighted (T1Gad); 4. Proton Density-weighted MRI (PDW); 5. 
Fluid Attenuated-Inversion Recovery (FLAIR); 6. functional-MRI; 7. Diffusion-weighted 
Imaging (DWI). Pulses with short repetition-time (RT) and time-to-echo (TTE) produce 
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T1 sequences. The RT is the time duration between successive pulse sequences 
applied to the same image slice. The TTE is the time duration between sending the radio 
frequency pulse and receiving the echo signal. T1-weighted sequence provides a proper 
differentiation between white matter (WM) and gray matter(GM), while cerebrospinal fluid 
(CSF) appears black due to lack of signal.

Conversely, by increasing both RT and TTE time, T2 sequences take place. It gives 
a good contrast between CSF and brain matter, where CSF appears brighter, and brain 
matter appears darker. Typically, T1-weighted and T2-weighted sequences can be 
ascertained easily by considering CSF as it looks bright on T2 weighted sequence and 
dark on T1-weighted sequence. Another widely used MRI image scan is FLAIR. Brain 
image in both T2 weighted images and FLAIR looks similar, with the only difference 
between the TTE and RT times are quite long in the FLAIR sequence. Like the T2, in FLAIR, 
gray-matter looks brighter than the white-matter, but CSF looks dark here compared to 
T2. FLAIR images are susceptible to pathological conditions and make the distinction 
easy between the CSF and anomalies.

Another commonly used MRI sequence is T1 Gd, obtained by injecting a nontoxic 
contrast-enhancing agent called Gadolinium. During imaging, when Gadolinium 
reduces the intensities of T1 images. Hence, it is very bright on T1 weighted sequences. 
In this paper, we discuss the end-to-end methods used for Brain Tumor Segmentation 
(BTS) and overall survival (OS) prediction of patients using MRI modality. The schematic 
diagram of the end-to-end approach is in Fig. 2.

Fig. 2 A schematic diagram for the end-to-end approach for BTS and OS prediction.

Manual diagnosis of tumors from the MRI scans is a time-consuming, 
complicated, and complex task. Also, the delineation of tumors from healthy tissues 
relies on the experience of the experts. Hence, there is a need for automation in 
this task, which can segment tumors with desired precision and accuracy (Işın, 
A., Direkoğlu, C., & Şah, M., 2016). The rest of the paper proceeds as follows: The 
second section includes methods for BTS, its challenges, Brain Tumor segmentation 
(BraTS) challenge tasks, and dataset. The third section has the classification of 
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the Convolutional Neural Network(CNN), with section four covering a literature 
survey of joint approaches for BTS and OS Prediction. The last section covers the 
conclusion and future work.

2. Brain-Tumor Segmentation Methods
Methods for BTS can be classified based on the level of user intervention, 

i.e., manual-segmentation, semi-automated segmentation, and fully automated-
segmentation.

2.1. Manual segmentation methods
Manual-Segmentation methods involve manually marking boundaries between 

healthy and tumor tissues, assigning labels to the region based on anatomic 
structures. Additionally, it needs broad and in-depth knowledge of anatomy and 
software tools. Typically, manual segmentation works on contrast-enhanced MRI 
images. It demarcates tumor areas slice by slice, which restricts expert raters’ view 
and hence not able to produce excellent outlined images (Prastawa, M., Bullitt, 
E., Moon, N., et al., 2003). Apart from this, manual segmentation outcomes are 
subject to considerable variability compared to ground truth results. It is due to 
changes in the shape, location, and appearance of cancerous tissues. Manual 
segmentation will not be optimal due to the use of a single image modality. In 
contrast, the integration of information from multi-modalities can give optimal 
segmentation results.

2.2 Semi-automated segmentation methods
In semi-automatic segmentation methods, the intervention of an expert is 

needed mainly to initialize the parameters, feeding response back to the model 
to improve results and its evaluation (Işın, A., Direkoğlu, C., & Şah, M., 2016). The 
process can include initializing parameters needed as input for computation such 
as of the tissue source in the form of seed point selection (Sauwen, N., Acou, M., 
Sima, D. M., et al., 2017), of the region area (Guo, X., Schwartz, L., & Zhao, B., 
2013). In contrast, feedback response to the model includes recalibrating the input 
parameters based on the result obtained. Although semi-automated segmentation 
methods are faster and give competent performance than manual segmentation, 
improper initialization of parameters may lead to suboptimal segmentation results 
(Prastawa, M., Bullitt, E., Moon, N., et al., 2003).

2.3 Fully automated segmentation methods
In fully automatic methods, the computer segment tumors based on algorithms 

without any human intervention. Many non-deep learning-based approaches 
were proposed earlier for tumor segmentation (before 2014) such as random 
forest classification, extremely random forest-based Markov Random Field (MRF) 
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classification. However, with the advent of deep learning and faster computation, 
deep learning-based approaches are used for automated segmentation problems.

2.3.1. Challenges for automatic brain tumor segmentation
The automatic segmentation of brain tumors is a difficult task due to heterogeneity 

in tumor tissues. It also suffers from class imbalance, e.g., tumor occupies minimal 
volume compare to other parts of the brain. It is clear from Table 1, which shows 
normal tissues occupying 98% of the brain volume. It also lacks large size annotated 
multimodal datasets, and there is a lack of uniformity among various datasets. The 
next subsection covers one such relevant dataset. 

2.3.2. BraTS-2019 tasks and dataset
Due to nonuniformity and variations in the dataset, objective evaluation of brain 

tumor segmentation methods and overall survival prediction are challenging tasks. 
However, with the advent of standardized benchmark, the BraTS, have become 
a widely accepted platform for the comparison of various segmentation methods 
using a common dataset. BraTS 2018 onwards challenge includes three tasks: 1) 
tumor segmentation, 2) overall survival prediction, and 3) uncertainty estimation for 
the predicted tumor sub-regions.

The BraTS-2019 [8-10] training dataset includes 335 cases, which contains 
259 High-Grade-Glioma and 76 Low-Grade-Glioma cases. The validation dataset 
consists of 125 cases, along with the ground truth segmentations of each case. 
For each subject, there are four MRI preoperative scans (T1 weighted, T1 with 
Gadolinium, T2 weighted, and FLAIR). The ground truth results with annotated 
labels include Necrotic and Non-Enhancing tumor core NCR/NET (label-1), edema 
(label-2), active tumor (label-4), and 0 for everything else. The dataset pre-
processing includes bias-field correction and registration. The scans are skull-
stripped and resampled to an isotropic resolution of 1x1x1. Width, height, and 
depth of each sample are 240, 240, and 155, respectively.

For overall survival prediction, the dataset contains a .csv file, which includes 
260 samples for the training set and 126 samples for the validation dataset. Each 

Table 1: Class imbalances in the dataset (Vaidhya, K., Thirunavukkarasu, S., Alex, V., & Krish-
namurthi, G., 2015).

Labels % of brain volume
Normal Tissues 98.00

Necrotic 00.18
Peritumoral-Edema 01.10

Non-Enhancing Tumor 00.12
Active Tumor 00.18
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sample includes age (range from 27 to 80 years), survival days (range from 23 to 
1592 days), and resection status.

2.3.3. Task 1 Similarity measures 
For objectifying segmentation tasks, the following performance metrics are used:- 

Dice Similarity Coefficien (Dice-score), Hausdorff distance (since BraTS 2017), 
specificity, and sensitivity for three central tumor regions; whole-tumor (WT), tumor-
core (TC) and enhancing-tumor (ET) (Menze, B. H., Jakab, A., Bauer, S., et al., 2014). 

Dice-score: It is defined as follows 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷	𝑆𝑆𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷	(𝑆𝑆, 𝑇𝑇) =
2 ∗ |𝑆𝑆 ∩ 𝑇𝑇|
|𝑆𝑆| + |𝑇𝑇|

	. 
It has a value between 0 and 1. The 0 indicates no match, and 1 signifies the perfect 

match between predicted and ground truth labels. 
Sensitivity (True-Positive-Rate): It is defined as follows: 

𝑆𝑆𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷𝑆𝑆𝐷𝐷𝑆𝑆𝐷𝐷𝑆𝑆𝑆𝑆 =
𝑇𝑇𝑆𝑆𝑇𝑇𝐷𝐷	𝑃𝑃𝑆𝑆𝑆𝑆𝐷𝐷𝑆𝑆𝐷𝐷𝑆𝑆𝐷𝐷

𝑇𝑇𝑆𝑆𝑇𝑇𝐷𝐷	𝑃𝑃𝑆𝑆𝑆𝑆𝐷𝐷𝑆𝑆𝐷𝐷𝑆𝑆𝐷𝐷 + 𝐹𝐹𝐹𝐹𝐹𝐹𝑆𝑆𝐷𝐷	𝑁𝑁𝐷𝐷𝑁𝑁𝐹𝐹𝑆𝑆𝐷𝐷𝑆𝑆𝐷𝐷	
	. 

Specificity (True-Negative-Rate): It defined as follows: 

𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆𝑆𝑆 =
𝑇𝑇𝑆𝑆𝑇𝑇𝐷𝐷	𝑁𝑁𝐷𝐷𝑁𝑁𝐹𝐹𝑆𝑆𝐷𝐷𝑆𝑆𝐷𝐷

𝑇𝑇𝑆𝑆𝑇𝑇𝐷𝐷	𝑁𝑁𝐷𝐷𝑁𝑁𝐹𝐹𝑆𝑆𝐷𝐷𝑆𝑆𝐷𝐷 + 𝐹𝐹𝐹𝐹𝐹𝐹𝑆𝑆𝐷𝐷	𝑃𝑃𝑆𝑆𝑆𝑆𝐷𝐷𝑆𝑆𝐷𝐷𝑆𝑆𝐷𝐷	. 

The Dice score, sensitivity, and specificity cover the spatial overlapping of the 
segmented regions and ground truth regions. 

A different class of metric calculates the maximum overall surface distance between 
two given finite element sets 𝑃𝑃 = {𝑆𝑆1, 𝑆𝑆2, 𝑆𝑆3, …..𝑆𝑆k} and 𝑄𝑄 = {𝑞𝑞1, 𝑞𝑞2,𝑞𝑞3,…,𝑞𝑞k} known 
as Hausdorff distance (Sim, K. S., Nia, M. E., Tso, C. P., & Kho, D. T. K., 2016) 

𝐻𝐻𝐹𝐹𝑇𝑇𝑆𝑆𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑃𝑃, 𝑄𝑄) = max{ℎ!(𝑃𝑃, 𝑄𝑄), ℎ!(𝑄𝑄, 𝑃𝑃)}	, 

ℎ!(𝑃𝑃, 𝑄𝑄) = max
"

∈ 𝑃𝑃 Mmin
#

∈ 𝑄𝑄{𝐻𝐻(𝑆𝑆, 𝑞𝑞)}P	 , 

ℎ!(𝑄𝑄, 𝑃𝑃) = max
"

∈ 𝑃𝑃 Mmin
#

∈ 𝑄𝑄{𝐻𝐻(𝑞𝑞, 𝑆𝑆)}P	 , 

where 𝐻𝐻(𝑞𝑞, 𝑆𝑆)	is the Euclidean distance between point 𝑞𝑞 and 𝑆𝑆. The functions ℎ!(𝑃𝑃, 𝑄𝑄), 
and ℎ!(𝑄𝑄, 𝑃𝑃) are known as Hausdorff distances measured from P to Q and Q to P, 
respectively.  The function	ℎ!(𝑃𝑃, 𝑄𝑄) determine the nearest point in Q for each point in 
P. The maximum of the values is known as the most mismatched point of P. The 
𝐻𝐻𝐹𝐹𝑇𝑇𝑆𝑆𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑃𝑃, 𝑄𝑄) is the maximum distances of	ℎ!(𝑃𝑃, 𝑄𝑄)  from P to Q and from P to Q 
for	ℎ!(𝑄𝑄, 𝑃𝑃). 

2.3.4. Task 2: Overall survival prediction
Upon segmentation, imaging features are given to machine learning algorithms 

to predict patient overall survival days. Typically, the prediction task uses imaging 
and clinical features. Various handcrafted features are; 1. tractographic; 2. spatial 
like the location of the tumor, the centroid of tumors; 3. first order and second-order 
statistics; 4. the length of the major axis, minor axis, surface area, and volumetric 
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feature; 5. Geometric features such as enhancing tumor inhomogeneity, tumor 
surface area irregularity. The geometric features are prudent for predicting overall 
survival days (Jungo, A., McKinley, R., Meier, R., et al., 2017). Some approaches 
use Visually Accessible-Rembrandt Images(VASARI); features defined by The 
Cancer Imaging Archive (TCIA). It is a part of the REMBRANDT project, which 
had 25 features describing the morphological structure of the brain.

The survival days of patients in the BraTS challenge are classified into three 
groups of Long-Term-Survivors (≥ 15 Months), Mid-Term-Survivors(≥ 10 Months, 
and < 15 Months), and Short Term-Survivors (< 10 Months).

2.3.5. Task 3: Uncertainty estimation of segmentation
It measures the confidence of the label assigned to each voxel, and the value 

ranges between 0 and 100, where ‘100’ represents the least confident prediction, 
and ‘0’ represents the most confident prediction. The voxels exceeding specific 
predetermined threshold values (T) can be filtered out. The performance of the 
network architecture is on the resulting voxels Dice score. Removing uncertain 
voxels or pixels will ideally increase the dice score of the segmentation results. The 
confidence measures give vital information about the reliability of segmentation 
results and help determine a critical situation where a medical review is necessary. 
The confident measure of the voxels can help to identify pixels or voxels that have 
not segmented, and therefore can be used to ratify the segmentation results [8].

In this paper, we discuss various deep learning-based end-to-end approaches 
encompassing Task 1 (Tumor segmentation) and Task 2 (Overall survival 
prediction). The paper also discusses a brief overview of techniques used to 
estimate the uncertainty of segmentation (Task 3) in Section 5. 

Convolution Neural Networks for segmentation
In recent years, deep learning methods have been used to solve a plethora 

of problems in different areas of research - most prominently in computer vision, 
pattern recognition, natural language processing. In many problem areas, 
deep learning-based approaches have outperformed the previous state of art 
methods. This achievement is due to the CNNs that can learn useful features 
from input data, without relying on self-engineered features (Milletari, F., Navab, 
N., & Ahmadi, S. A., 2016). For brain tumor segmentation, all the CNNs have 
contributed remarkably to achieve excellent performance. Apart from all the 
merits, it has demerits, too, i.e., it lacks interpretability and does not apprehend 
model uncertainty well (Gal, Y., & Ghahramani, Z., 2016). Hence it is critical to 
design a robust network architecture for segmentation problems. Various deep 
learning-based CNN architectures are useful for BTS. The CNN architecture is 
classified based on the input data dimensions and structure of networks.
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3.1. Classification of CNNs architecture
3.1.1. Classification based on the structure

Fig. 3 Classification based on CNN structure.

Various approaches for segmentation use 2D CNN architecture. The slices of 
2D images are used as input to perform segmentation tasks or 3D based CNN 
architecture, use patches of voxels as input to perform segmentation tasks. 2D 
CNN architecture requires low memory, but it lacks depth information, which 
will restrict the performance of segmentation (Wang, G., Li, W., Vercauteren, 
T., & Ourselin, S., 2019). 3D CNN architecture also exploits depth but requires 
an enormous RAM size to process. It may bound the size of the input patch, 
channel size, or numbers of features map of the architecture (Wang, G., Li, W., 
Vercauteren, T., & Ourselin, S., 2019). A 2.5 based CNN approach uses inter-
slice images along with intra-slice images. The images from orthogonal views are 
the input in the network. It is a tradeoff between 2D based CNN and 3D based 
CNN. 2.5 based CNN can have some advantages over 2D, and 3D based CNN. It 
can capture inter-slice features, which 2D CNN cannot, and require less memory 
compared to 3D CNN.
Table 2. Comparison between architectures classified based on input dimensions.

2D based CNN 
architecture

2.5D based CNN architecture 3D based CNN architec-
ture

Merits: 
– requires less 
memory.

Merits:
– can capture depth informa-
tion through inter-slice imag-
es.
– requires less memory than 
3D CNN.
– The performance will be bet-
ter than 2D CNN architecture.

Merits:
– captures depth infor-
mation.
– Accuracy is better than 
2D and 2.5D Architec-
ture.
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Demerits: 
– lacks depth infor-
mation.
– Performance may 
suffer.

Demerits:
– It requires more memory 
than 2D architecture.
– Performance is not better 
than 3D architecture.

Demerits:
– requires a consider-
able size of memory.
– more processing is 
required.
– Performance may suf-
fer if the size of memory 
is limited.

3.1.2 Classification of architecture based on numbers of classifier
The architecture can also be classified based on the number of classifiers; 

a single or a cascaded model or an ensemble network model (Wang, G., Li, W., 
Ourselin, S., & Vercauteren, T., 2018). Each model is based on 2D CNN or 3D 
CNN.

Fig. 4 Classification of CNN architecture based on numbers of classifiers.

Unique model-based approaches include a single network to segment all the three 
ROI (Regions of Interest), i.e., whole tumor, tumor core, and active tumor. Whereas, 
in the cascaded model, the segmentation of three regions of interest occurs on three 
different models. These three networks can be identical or with minor differences in the 
architecture. In cascade models, the outcome of the first network will be input to the 
second network. Likewise, the second model’s output will be input to its successive 
model. The approach can successfully control the number of false positives pixels due 
to the cascade structure. Each successive network will have a restrictive region as input 
defined by the predecessor network. Ensemble-based models are the collection of 
various networks with identical architecture. The intuition for the ensemble model is that 
it provides a more robust result compared to single-model methods. Also, some network 
architectures may compensate for the limitation of other networks and increase the 
overall network performance (Albiol, A., Albiol, A., & Albiol, F., 2018). The next section 
covers the state-of-the-art covering end to end methods with BTS and OS prediction.
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4. Joint methods for BTS and OS prediction
The authors [18] proposed an ensemble of U-Net and FCNN for the brain-tumor 

segmentation task. MRI scans passed as input to both the networks individually, train the 
network, and the final result is obtained by fusing the result from both the networks. One 
hundred sixty-three sample scans train the network model, and 66 sample scans validate 
the network model. The U-NET comprises symmetrical contracting and expansion 
path, with a skip connection between contracting and expansion path. U-NET captures 
sufficient contextual information, but it loses local information during downsampling, 
which is extremely necessary during the expansion path for image construction. Through 
skip connection at different levels, structural information passes to the respective levels 
at the expansion path, which is necessary to achieve robust performance (Ronneberger, 
O., Fischer, P., & Brox, T., 2015). The second network comprises of encoder-decoder 
architecture, with VGG-11 forms a pre-trained model. The encoding phase includes 
convolution and max-pooling operations. In contrast, the decoding phase includes the 
deconvolution operation to obtain the same output size as the input. Unlike the U-NET 
model, the outcome of each layer forms a feature to the corresponding deconvolutional 
layer. Finally, the layer with maximum probability gives the segmentation result. For 
segmentation, cross-validated accuracy was 76.07%, and a mean squared error was 
438.54 for the training data. Additionally, validation dataset accuracy was 57.1%, with a 
mean squared error of 382.96.

For survival prediction, approximately thirty-one thousand features from the three ROI 
based on texture, histograms, grey-tone difference matrix, co-occurrence matrix, and 
3D features are available. Additionally, a novel 10 layers 3D CNN architecture enhances 
survival prediction accuracy. The new features from MRI inputs and segmentation 
results combine with the features from the dense layer for the overall survival estimation 
task. Accuracy on validation and test dataset was 67% and 57% respectively for survival 
prediction.

Albiol et al. used an ensemble of VGG, two inception models, and fully connected 
networks. Z-score normalization and data augmentation are pre-processing techniques. 
The VGG-like model contains four blocks, where each block comprises batch 
normalization, two 3D Conv layers, and ReLU activation function. In the last layer, softmax 
performs segmentation. The dense-like model was similar to the VGG model; it includes 
20 3D convolution layers, two fully connected layers, and a logit activation function for 
segmentation. The other two models, inception-2 and inception-3, were like Googlenet 
with few modifications. It included three blocks of convolution layers with the number of 
feature parameters. Next, it has inception layers, two fully connected dense layers, and 
logit function in the last layer for segmentation. The only difference between inception-2 
and inception-3 models is the number of inception layers. Each model trains individually, 
with an 80:20 train to test ratio. Networks were trained using Adam optimizer and with a 
learning rate = 0.0001 for 40000 iterations. The ensemble model performed better than 
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individual models. On the validation dataset, dice-scores for whole-tumor, tumor-core, 
and enhancing-tumor were 0.872, 0.760, and 0.751, respectively.

The Ujjwal et al. (2018) proposed a single model-based approach that has a three-
layered, 3D U-NET model. Each layer includes two Conv operations with kernel size 
3x3x3, RELU operation, and batch normalization. For the training model, the 3D patch of 
size 64x64x64 covers the sample scans. The model trains for 50 iterations and produces 
four probability maps for each ROI and background. Labels are derived using a maximum 
probability for each map. Pre-processing of the input data includes bias-field corrections 
on each image to correct each channel’s grayscale heterogeneity using the N4ITK tool. 
Also, each modality of scans was normalized to have mean 0 and variance 1.

The post-processing includes 3D connected-component analysis, which removes 
false positives in some of the segmentation results. Subsequently, to overcome over-
segmentation found in some cases, binary brain masks were produced from brain 
volume, and with logical AND operation on the segmentation result. It helped to 
improve the dice score of the segmentation significantly. On the validation dataset, 
Dice-scores were 0.88, 0.83, and 0.75 for the whole tumor, tumor core, and enhancing 
tumor, respectively. Overall-Survival-Prediction uses 468 features. It includes first-order 
statistics, shape features, Gray Level Co-occurrence Matrix (GLCM), and Gray Level 
Run Length Matrix (GLRLM) features. They are derived using a Pyradiomic package 
and Cancer Imaging Phenomics Toolkit (CaPTk). The multilayer perceptron and random 
forest perform classification and regression. On the validation dataset, the proposed 
model achieved 57.1% accuracy.

Isensee et al. (2018) also proposed a single 3D CNN based U-NET approach in 
BraTS 2017 and BraTS 2018 challenge. With only a few modifications to the original 
U-NET approach (Ronneberger, O., Fischer, P., & Brox, T., 2015). Its encoder had five 
layers, with each layer having two Conv operations, instance normalization, and Leaky 
RELU as the activation function. The critical difference between batch and instance 
normalization is that the latter applies it to each instance whereas, former applies it to 
the whole batch (Gal, Y., & Ghahramani, Z., 2016). Several feature maps initialize to 30, 
double with subsequent layers. For downsampling, max pool operation uses a kernel 
size of 2x2x2. At the decoder, upsampling uses the same kernel size. Each input image 
normalizes to zero mean and unit variance of the foreground region. The background 
region has label 0, whereas the foreground region represents the brain area. A patch 
size of 128x128x128 captures essential semantic information, and a batch size of two fits 
GPU memory. A combination of soft dice and cross-entropy loss trains the network. At 
the output layer, softmax predicts class labels. Dice scores of the proposed model are 
89.51, 70.69, 82.76 for the WT, TC, and ET.

Isensee et al. added a region-based training approach, an additional dataset, and 
a combination of soft dice and cross-entropy loss. The results of different variations on 
the baseline model are in (Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., & 
Maier-Hein, K. H., 2018). For OS prediction Isensee et al. proposed the Random forest 
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regression (RFR) model. It uses a total of 517 features using the Pyradiomics package. 
Additionally, they trained an ensemble of 15 multilayer perceptron models (MLP). The 
average outputs of both the RFR and the MLP ensemble provide final output. The 
accuracy of the test dataset was 52.6%, with 457.83 RMSE.

McKinley et al. proposed a similar U-NET-based ensemble network, where densely 
connected blocks form a basic unit. Instead of the transition layer, a dilated convolution 
layer increases the receptive field (McKinley, R., Meier, R., & Wiest, R., 2018). They 
introduced a new loss function to train the network, which is a variation of the binary loss 
function, with an uncertainty factor introduced. Further, they introduce focal loss to tackle 
the impacts of class imbalance. Prior training, input data have been processed and 
augmented. The dimension of input tensor was: 2x4x5x192x192, which includes batch 
size, modalities, images from all planes, and spatial dimensions. The performance on the 
validation dataset with Dice scores is 0.901, 0.854, and 0.795 for the whole tumor, tumor 
core, and enhancing tumor, respectively.

Banerjee, S., Mitra, S., & Shankar, B. U. (2018) propose the 2D network with the 
encoder-decoder architecture covering X-Y, Y-Z, and X-Z planes. Instead of max pooling, 
modified max-pooling preserves the spatial location of max feature values, which in turn 
helps to maintain smooth boundaries of ROIs at decoder output. All the modalities use 
a patch size of 128x128. The combined loss function of dice-loss and weighted cross-
entropy train all the networks. At the output, all the feature maps fuse to get the result. 
Invalidation cases, the dice-scores were 0.88 for WT, 0.77 for ET, 0.80 for TC. For survival 
forecasting, thirty-three semantic features (e.g., necrosis, shape, location) and fifty 
agnostic features(such as texture, intensity) from the segmentation results are available. 
These extracted features form input into two layers MLP (multilayer perceptron). The 
accuracy of the method was 54% on the validation dataset.

Sun L. et al. proposed a combination of both cascade and Ensemble 3D models. 
The network model includes Wang (2019) based cascade model, Isensee based 
U-NET model, and original U-NET model. The ensemble model performs a competitive 
performance on the validation dataset with dice-scores of 0.80 for enhancing tumor, and 
it is 0.90 for the whole tumor, and it is 0.84 for tumor core. For survival prediction, fourteen 
features were selected from 4524 features to train a random forest regressor model. 
These features are first-order statistics, shape, and texture features. In the validation and 
test case, the accuracy was 46.4% and 61% for survival prediction.

The [26] proposes a cascaded approach were three different 2D U-NETs, one for 
each region of interest, i.e., for the whole tumor, tumor core, and enhancing tumor. Before 
training, each image was padded to 256×256 to create ordinary resolution. Each slice 
is flip using data augmentation to add variations on the dataset images. A patch of size 
64x64 was created based on their observation that all tumors are in 64 or fewer adjacent 
slices. Soft dice loss function trains the network. The summing contours of each model 
produced the WT contour. The TC contour is available by combining the output of the 
ET and TC models. The enhancing tumor region was the direct output of the enhancing 
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tumor model. The best result from each model was taken as output after 100 epochs run. 
The Dice-score for the whole-tumor was 0.87, for tumor core was 0.76, and for enhancing 
tumor was 0.72.

For overall survival prediction, a three-layer 2D CNN architecture is useful, and the 
network initializes with orthogonal weights. More recent work has suggested initialization 
with orthogonal weights or kernels, the generated space tends to display rich features 
which help to achieve better accuracy. The 2D slices with dimensions 240x240 and 
ground truth with input are input to this 2D CNN. The resulting representation vector of 
dimensions 12x12x30, along with patients’ age, was passed into an extreme learning 
machine (ELM) regressor model. ELM is feedforward neural networks, with the parameters 
of hidden nodes randomly generated (need not be tuned), and by analytically computing 
output weights. The proposed method accuracy on training data was 0.86 for survival 
prediction.

Likewise, Myronenko, A. (2018) proposes a two-step 3D UNET based cascaded 
approach. The first network detects the contour map of the tumor, and the second 
network delineates the tumor detected from the first network into ET, TC, and edema. For 
all the input images, the brain mask creates differentiating the brain area with nonbrain 
areas. Non-brain areas are 0. Slices with brain images were normalized. T1, T2, FLAIR, 
and T1ce-T1 (T1ce image without the T1 image) is the input. The dice-score for validation 
cases is 0.88 for the whole tumor, 0.71 for enhancing tumor, and 0.75 for tumor core. The 
survival prediction uses volume-features from all the regions of interest, distance from the 
brain to the centroid of the tumor, and age is input to the linear regressor model. Using 
only the “age” feature to train the linear regressor model helped to achieve accuracy of 
0.558 on the test dataset and secured the 3rd place in the BraTS challenge 2018.

Myronenko proposed a CNN based encoder-decoder structure, which won the 
BraTS2018 challenge. The network has a large asymmetrical encoder with five 
layers to extract in-depth features. The decoder had three layers to reconstruct 
segmentation. The three-layered variational autoencoder (VAE) regularize 
distribution. It ensures useful properties to generate a new sample from the 
distribution during training. Each layer consists of RESNET like blocks. The block 
has group normalization, RELU, Conv operation, and identity skip connection. The 
number of blocks in each layer and the number of feature maps increases. Following 
pre-processing, augmentation is useful. In essence, normalization of all images, 
images were generated by applying random intensity shift, rescaling factor, and 
a random axis mirror flip for all the three axes. The group normalization(GN) is 
better than batch normalization(BN) for small-batch, i.e., for 1 or 2. GN divides the 
channels into groups and normalizes within the group computing the mean(𝝁) and
variance (σ) (Ulyanov, D., Vedaldi, A., & Lempitsky, V., 2016). GN’s computation is 
not dependent on the size of the batch, and its accuracy is stable for even larger 
batch sizes. The architecture follows the typical U-NET architecture of successively 
reducing image size by two and increasing feature map by 2. The dimensions of 
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the kernel used in the convolutions layer were 3x3x3, with 32 feature maps initially. 
The output dimension of the encoder was 256x20x24x16.

The structure of the decoder is similar to the encoder, where each block reduces 
feature size by two and increases the image dimension by two leads spatial size the 
same as the original image size. Following it is a 1x1x1 Conv layer with three feature 
maps for each ROIs and a sigmoid as the activation function. Three dice loss functions 
together form the loss function. Lossdsice is between decoder segmentation results 
and ground truth; L2 loss is between a VAE image and the input image. LossKL is 
Kullback Leibler divergence between the estimated distribution and a prior distribution. 
Validation results of 10 ensembled models using data Augmentation were 0.82, 0.91, 
and 0.86 average dice scores for ET, WT, and TC, respectively. The proposed model 
achieved the first position in the Brats-2018 Challenge, and on the test cases, dice-
scores were 0.76, 0.88, and 0.81 for enhanced tumor core, whole tumor, and tumor 
core, respectively.
Table 3. Comparison of the end to end approaches for brain tumor segmentation and Overall 
survival prediction methods (BRATS 2018 & 2019). 

Author Pre-pro-
cessing

Seg menta-
tion

Post Pro-
cessing

OS Pre-
diction

Results for Segmentation
Results for 

OSMean
Dice WT

Mean 
Dice TC

Mean 
Dice ET

Shboul et 
al. 

- The en-
semble of 
UNET and 
FCN, with 
VGG16 as 
pre-trained 

model

- Ten 
layers 

3D CNN 
model

The validation set accuracy: 
57.1%

Validation 
dataset: 

57%

Albiol et al. Z-score nor-
malization 
and data 

augmenta-
tion

Ensemble 
of VGG-

like, Dense 
connected 

model, 
Inception-2 
and Incep-
tion3 model

- - Validation 
set accu-

racy
0.881
Test 

accuracy: 
0.850

Valida-
tion set 

accuracy
0.777

Test ac-
curacy: 
0.740

Valida-
tion set 

accuracy
0.773

Test ac-
curacy: 
0.723

-

Ujjwal et al. Bias field 
correction 

and
z-score nor-
malization
- No data 

Augmenta-
tion

3D UNET Connect-
ed Com-
ponent 

Analysis, 
logical 
AND 

operation 
between 

brain map 
and seg-
mentation 

result

Multilay-
er per-
ceptron 

and
random 
forest 

regres-
sion

Validation 
data-

set:0.88

Valida-
tion data-
set:0.83

Vali-
dation 

dataset: 
0.75

Validation 
dataset 

accuracy:
Random 
forest: 
37.5%
MLP: 

57.1%
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Caver et al. 
[26]

Z-score nor-
malization 
and data 

augmenta-
tion

Three 2D 
UNET for 

each region 
of Interest

- Three - 
layer 2D 

CNN

0.878 0.76 0.724 Training 
data-

set:86.4%
Validation 
set:60.7%

Isensee 
et al. 

Z-score nor-
malization 
and data 

augmenta-
tion:

random 
rotations, 
random 
scaling, 
random 

elastic de-
formations, 

gamma 
correction 
augmen-

tation, and 
mirroring.

3D UNET for some 
cases 
of LGG 
which 
do not 
contain 

enhancing 
tumor:

replace-
ment of 
enhanc-
ing tumor 

voxels 
with 

necrosis if 
the total

the 
number of 
predicted 
enhancing 
tumor < T 
(threshold 

value.)

The 
ensem-

ble of 15 
Multilay-
er per-
ceptron 

and
random 
forest 

regres-
sion

Validation 
dataset:
89.51

Vali-
dation 

dataset:
70.69

Vali-
dation 

dataset:
82.76

Test data-
set: 52.6%

Author Pre-pro-
cessing

Segmenta-
tion

Post Pro-
cessing

OS Pre-
diction Results for Segmentation Results for 

OS

Mean
Dice WT

Mean 
Dice TC

Mean 
Dice ET

McKinley 
et al.

Data Aug-
mentation:

random 
flipping, 
random 
rotation, 
random 
shift and 
scaling

2D UNET - - Validation 
data-

set:0.901

Valida-
tion data-
set:0.85

Vali-
dation 

dataset:
0.795

-

Weninger 
et al.

normal-
ization on 

brain mask

Cascaded 
3D UNET

- linear 
Regres-

sor

Validation 
dataset:
0.889

Vali-
dation 

dataset:
0.758

Vali-
dation 

dataset:
0.712

Test data-
set: 55.8%

Myronenko 
A.

Z-score nor-
malization
data aug-
mentation: 
intensity 

shift, scal-
ing, random 

axis flip

UNET + 
Variational 

Autoen-
coder

- - Validation 
dataset:
0.9042

Vali-
dation 

dataset:
0.8596

Vali-
dation 

dataset:
0.8145

-
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Agravat R. 
et al. 

z-score nor-
malization,

removal 
of last ten 

slice

2D UNET - Random 
Forest 

Regres-
sor

Validation 
data-

set:0.7

Valida-
tion data-
set:0.63

Valida-
tion :0.6

Validation 
accuracy:

51.7%

Sun L. et 
al.

Z-score nor-
malization
data aug-
mentation: 

random flip, 
random 

Gaussian 
noise

An ensem-
ble of 3 3D 

network

-

Random 
Forest 

Regres-
sor

Validation 
dataset:

0.90

Vali-
dation 

dataset:
0.84

Vali-
dation 

dataset:
0.80

Validation 
accuracy:

46.4%
Test accu-

racy:
61%

Banerjee 
S. et al. 

-

The ensem-
ble of 3 2D 

network
-

MLP Validation 
dataset:

0.88

Vali-
dation 

dataset:
0.80

Vali-
dation 

dataset:
0.77

Validation 
accuracy:

54%

Feng et al. bias 
correction 
algorithm,
denoising 
method 

to reduce 
noise, nor-
malization

The ensem-
ble of 6 3D 

UNET

- Nine 
features, 
linear re-
gressor 
model

0.90 0.83 0.79 Test case 
accuracy: 

32.1%

5. Task 3 Uncertainty estimation of the segmentation result
Uncertainty is through a dataset (also called as “Aleatoric”) or network structure 

(also called as “epistemic” uncertainty) (Lakshminarayanan, B., Pritzel, A., & Blundell, 
C., 2017). Aleatoric is model to “homoscedastic” or “heteroscedastic” uncertainty. In 
homoscedastic, the variation of noise is constant on multiple input samples, whereas 
heteroscedastic differs for different samples (Lakshminarayanan, B., Pritzel, A., & 
Blundell, C., 2017). In BTS, since the intensity values of MRI images are not uniformly 
distributed, we pre-process the dataset to reduce the uncertainty. Aleatoric uncertainty 
is removed by incorporating more data, whereas epistemic uncertainty can overcome 
by incorporating more data.

Since deep neural models are not able to apprehend uncertainty well, various 
Bayesian deep learning methods are useful but increase complexity and additional 
computation cost (Jungo, A., McKinley, R., Meier, R., et al., 2017). Alternatively, 
different methods to approximate the posterior probability over the weights, such 
as Laplace approximation, MCMC method (Markov chain Monte Carlo), variational 
inference Bayesian network, and many others as mentioned here is useful (Agravat, 
R. R., & Raval, M. S., 2019). For semantic segmentation, the variational inference is 
useful to approximate the posterior probability over the weights. Test time dropouts 
were used to sample from distribution to calculate uncertainty for indoor and outdoor 
scene understanding (Feng, X., Tustison, N. J., Patel, S. H., et al., 2020). Jungo et al. 
(2018) proposed a variational inference approach to estimate uncertainty for brain 
tumor segmentation tasks. Dropout at test time is useful to sample networks randomly 
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to calculate the average probability of voxel labels given test inputs over the sampled 
networks. Entropy approximates the obtained probability vectors.

Eaton-Rosen Z. et al. (2015) also used a similar approach to calculate uncertainty 
for segmentation tasks. They also used Dropout at test time to calculate the average 
probability of labels given the test dataset. The variance approximates the obtained 
probability vectors. Wang et al. proposed the method to capture Aleatoric uncertainty 
using test time data augmentation. They perform rotation along all the axis, scaling, 
and flipping on the volume images to add variability to the dataset (during training and 
testing). N variations of input image were obtained through sampling to calculate the 
probability of labels given test images. The majority vote approximates the obtained 
probability vectors. 

6. Conclusion and future work
Automatic brain tumor segmentation and overall survival prediction are critical and 

challenging tasks that can aid experts for better diagnosis, treatment, and surgical 
planning. This aid can improve the life expectancy of patients. In this paper, we studied 
various network architectures and found that ensemble models excel in other network 
architectures for tumor segmentation. With the reported performance of the methods 
investigated in this paper, we can state that deep learning-based approaches have 
the potential to fulfill desirable benchmarks for brain tumor segmentation, with the help 
of more substantial datasets and data augmentation. Current approaches are not able 
to get desirable results for the overall survival prediction task because of the lack of 
ample data available for survival prediction. Deep learning-based methods for survival 
prediction is used to get competitive results, provided with a large dataset. Further 
improvements are made by;

1. implementing robust network architectures; 
2. data augmentation to fine-tune the multiple datasets;
3. including uncertainties information for correct segmentation; 
4. adding complementary information from other MRI scans or other imaging 

scans such as functional MRIs, Diffusion-weighted Imaging (DWI), Positron Emission 
Tomography (PET). For survival prediction, incorporating more features and samples 
through clinical collaboration will improve the prediction accuracy significantly.
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