
151

Challenges of Using Live Process Migration in
Distributed Exascale Systems
Zeinab Sohrabi, Ehsan Mousavi Khaneghah

Department of Computer Engineering, Faculty Engineering, Shahed University, Tehran,
Iran, Zeinab.Sohrabi@shahed.ac.ir, EMousavi@Shahed.ac.ir

*Correspondence:
Ehsan Mousavi

Khaneghah, Department
of Computer Engineering,

Faculty Engineering,
Shahed University,

Tehran, Iran, EMousavi@
Shahed.ac.ir

Abstract
Virtual machine-based process migrator mechanisms have the
potential to be used in distributed exascale systems due to their
ability to execute process execution and support environments
with the heterogenous of the computational unit. The ability to
reduce process suspension time and use the concept of live
process migrator makes it possible to use this mechanism to
transfer processes in distributed exascale systems to prevent
related process activity failure. The performance function of a virtual
machine-based process migrator mechanism cannot manage
dynamic and interactive events and the effects of this event on
the mechanism operation and the change in the basic concept
of system activity from the concept of the process to the concept
of global activity. This paper examines the challenges of dynamic
and interactive event occurrence on virtual machine-based process
migrators by analyzing VM-based migrator's performance function.

Keyword: Virtual Machine-Based Process Migration, Distributed
Exascale Systems, Dynamic and Interactive Events, Process
State.

1. Introduction
In traditional high performance computing systems, if the computational unit is not

capable of executing the process or cannot meet the time constraints of processing
the process, and there is a computational unit in the system in which it is possible to
continue the execution process, the load balancer uses the process migrator to change
the process execution unit (Khaneghah, E. M., ShowkatAbad, A. R., & Ghahroodi, R. N.,
2018, February; Duolikun, D., Watanabe, R., Enokido, T., & Takizawa, M., 2017, March;
Khaneghah, E. M., ShowkatAbad, A. R., et al., 2018). In traditional high performance
computing systems, the process migrator based on (source, destination, selected
process) transfers the process from the source to the destination. The migrant process
should be able to continue in the destination. In the traditional system, the ability to
continue the process of process execution in the computational unit as well as the
concept of suspension time are two essential factors in determining the mechanisms
and functional patterns of the process migrator (Jain, N., Menache, I., Shepherd, F. B.,
& Naor, J. S., 2017; Reghenzani, F., Pozzi, G., et al., 2016, September).

Azerbaijan Journal of High Performance Computing, Vol 3, Issue 2, 2020, pp. 151-163
https://doi.org/10.32010/26166127.2020.3.2.151.163

152

If the mechanism used by the process migrator can transfer and maintain the status
of the process during the implementation of activities related to the process migrator
and also the destination can provide the required process resources based on status
to have the current execution, it is possible to continue the execution of the process
in the destination (Takagawa, Y., & Matsubara, K., 2019; Pickartz, S., Breitbart, J., &
Lankes, S., 2016; Gholami, M. F., Daneshgar, F., Low, G., & Beydoun, G., 2016).

During its suspension, the migrant process is unable to respond to requests from
other processes, especially interactions with these processes. The inability of the
process to respond to other processes increases the execution time of the process and,
consequently, the execution time of the scientific application of which the process is a
member of it. Numerous mechanisms have been proposed for the process migration,
although they have been proposed to adapt to the various scientific application
requirements in the field of migration. However, in most of them, the mechanical design's
focus is on reducing the suspension time and the possibility of interacting with other
processes during the suspension time. The inability of the process to interact with other
processes and increase the scientific program's execution time may cause challenges
to other processes that are members of the computing system in the continuation of
their implementation process. The mentioned lack of interaction and communication
may cause executing other processes to fail (Jain, N., Menache, I., Shepherd, F. B., &
Naor, J. S., 2017; Reghenzani, F., Pozzi, G., et al., 2016, September).

Multiple process migration mechanisms attempt to transmit the program code
section of the migrant process at once. During the code's migration, because the
program code is not running in either source and destination, it has no execution
capability, and it cannot be said that the process is running. This causes the process
to lack the ability to communicate with other processes and not being able to run.
Numerous process migration mechanisms try to reduce the process suspension time
by using the concept of instantaneous transfer (Jain, N., Menache, I., Shepherd, F.
B., & Naor, J. S., 2017; Reghenzani, F., Pozzi, G., et al., 2016, September; Noshy, M.,
Ibrahim, A., & Ali, H. A., 2018).

In addition to the program code section, the process has a data section related to
the process. Process data has a higher volume compared to the program code section.
The full-copy process migration mechanism transfers all parts of the program data to
the destination, and the flushing migration mechanism transfers the data to the server
in one go. Process migration mechanisms gradually transfer data over some time or
in exchange for observing a specific event. The gradual transfer of data and reducing
the non-running time of the migratory process allow the transfer of data according to
the requirements of the migratory process from the source to destination. Because
to execute the process, there is a need for the program code along with the process
execution data for a specific execution program code; the process suspension includes
the start time of the process execution suspension until the data transfer required
to start the process execution or continuation of the execution process. During this

Zeinab Sohrabi & Ehsan Mousavi Khaneghah

153

period, the process is suspended (Varadarajan, S., & Ruscio, J., 2009; Junior, P. S.,
Miorandi, D., & Pierre, G., 2020, December).

In traditional systems, the concept of virtual machine-based process migration is
used to manage this situation and enable the execution of the process during the
transfer period. In the virtual machine-based process migration mechanism, the
migratory process migrates between the source and destination in a way that does
not stop providing process services or interactions and connections between other
processes and the migratory process. In this mechanism, memory resources, files and
inputs, and outputs, especially network communications and processing resources
related to the migratory process, are transferred from the destination. This transfer is so
that the process of communication with other processes or process service does not
stop. In traditional systems, if the migration time of the virtual machine containing the
process from the source to the destination is negligible compared to the transfer time
of the process without the virtual machine, then the migration of virtual machine-based
processes in the sentence will be a live migration (Noshy, M., Ibrahim, A., & Ali, H. A.,
2018; Singh, G., & Gupta, P., 2016, September).

In distributed exascale systems, dynamic and interactive events can occur at any
time in the program execution. The occurrence of a dynamic and interactive event
during the migration of a migratory process may alter the elements influencing the
transfer of the process that causes the process migrator to fail. If traditional mechanisms
are used for process migrators, the failure of the process migrator activity, unlike the
failure of the other elements that make up the system manager, cannot be detected
until the end of the activity.

In traditional process migrator, such as virtual machine-based process migration
mechanisms, the process migrator does not collect information from the status of the
elements of the computing system beneficiaries of the process migration, and if the
status changes, the elements affecting the process migration are unaware of the new
situation and operate based on information submitted by the load balancer. This is
especially true of the virtual machine-based process migration mechanism. In a virtual
machine-based process migration mechanism, the migratory process is transferred in
the form of a virtual machine. This allows more information sets to be transmitted than
traditional migration mechanisms in this way. Any change in the beneficiary status
in process migration may violate the function of the virtual machine-based process
migration (Singh, G., & Gupta, P, 2016, September; Gharb, H., Khaneghah, E. M., et
al., 2019).

In this paper, while analyzing the function of the virtual machine-based process
migration mechanism and examining its unique features, the effects of dynamic and
interactive events on the mechanism's function will be investigated. Analyzing the
effects of the dynamic and interactive events on the process migration mechanism's
functioning makes it possible to consider what features will cause the migration
mechanism of virtual machine-based processes while maintaining compatibility is

Azerbaijan Journal of High Performance Computing, 3 (2), 2020

154

used in distributed exascale systems.

2. Related Work
In (Tanenbaum, A. S., Van Renesse, R., et al., 1990), the amoeba operating system

is proposed to reduce full migration suspension. This operating system uses a complete
copy mechanism to transfer the process. This distributed operating system is used for
two reasons. The first reason is its independent addressing and kernel design; the
second reason is its availability feature, which can be easily implemented on basic
equipment configuration at no high cost. The distributed amoeba operating system
is used to implement parallel algorithms and a software platform for a distributed
programming language. For several reasons, Amoeba is a good platform for migration.
Amoeba communication mechanisms have spatial transparency. Its micro-core design
maintains the process's status, especially in files and machines that access servers
through transactions (Steketee, E., Zhu, W. P., & Moseley, P., 1994, June).

In (Smith, J. M., 1988), the system V operating system is introduced based on
process migration to reduce the suspension time. In this article, the system V system
is a distributed operating system that runs on a cluster. Each host runs on an identical
small kernel with some runtime modules. System V provides transparency, minimal
connections, and residual dependencies from the source machine. The System V
operating system gathers load information from other workstations, and when the
migration request is issued, it selects the first available workstation and starts the
migration process. In this operating system, users can control process migration, and
by executing special commands, they can transfer local processes to idle machines.

In (Milojičić, D. S., Douglis, F., et al., 2000), the Sprite operating system is described
to reduce residual interdependencies between processes. The operating system
provides ease and transparency for both users and applications by creating processes
during a host's execution. Processes can re-access remote resources at any time,
including files, machines, and network connections from multiple locations. A user
returns to workstations when their processes are off, this process quickly returns to
its source and runs there, or it may be suspended elsewhere. The main purpose of
Sprite's operating system is to minimize residual dependencies.

In (Zheng, Y., & Nicol, D. M., 2011, June), the OpenVZ mechanism is a type of carrier
that allows multiple sets of processes to run separately. This mechanism is based on a
hierarchical processing structure. It is known as a single bed as a single core sample.
Each separate sample can be inspected to save a carrier's full status and then restart.
Inspection and restart can be loaded as kernel modules. Process carriers are stored
in a continuous state. Dependencies such as processing hierarchies, identifiers, and
shared resources are stored and retrieved during reboot. One of the advantages of this
method is the execution of several sets of separate processes and also, this algorithm
does not require any special hardware (Kovari, A., & Dukan, P., 2012, September).

In (Barham, P., Dragovic, B., et al., 2003) addresses the Xen operating system. Xen

Zeinab Sohrabi & Ehsan Mousavi Khaneghah

155

was the first hypervisor to be implemented at the system level. Xen uses two patterns
to convey status: either process-based or automated. Virtual machine migration in Xen
is such that managers can migrate live with physical hosts across the local network
with Xen virtual machines. During this local procedure, it repeatedly copies the virtual
machine memory to the destination without stopping. This process requires a pause
of about 60-300 milliseconds to perform the final coordination before starting the
virtual machine at the final destination, which provides integrated migration (Gupta, D.,
Cherkasova, L., Gardner, R., & Vahdat, A., 2006, November).

Another virtual machine-based process migration mechanism mentioned in
(Chirammal, H. D., Mukhedkar, P., & Vettathu, A., 2016) is the KVM mechanism. Live
migration in this type of virtual machine uses the preset mechanism, which means that
if a guest page changes after copying, that page must be copied again. KVM executes
the infected page implementation, which uses it as a bitmap of the last modified pages.
KVM either reads guest pages or maps them and maps them to write after the first write
access.

 As mentioned in (Zheng, Y., & Nicol, D. M., 2011, June), MOSIX is a virtual machine-
based process migration mechanism. It is the first high-performance computing
operating system based on process migration. Process migrator in MOSIX means that
source and destination nodes work together to make an immigration decision. During
migration, only infected pages and process migration environments are transferred,
while clean pages enter the page whenever an error occurs in the destination node.
This operating system's advantages include scalability and dynamic configuration
structure and error tolerance (Barak, A., Guday, S., & Wheeler, R. G., 1993).

In (Barak, A., & La'adan, O., 1998), the single-system image mechanism, or SSI, of
virtual machine-based process migration is introduced. This mechanism's main purpose
is to provide a single machine for all processes that can manage inhomogeneities by
keeping users away from the underlying layers. This mechanism tries to consider all
resources as local processing resources. One of the benefits of SSI is transparent
access to the process and its resources, which facilitates process migration.

3. Virtual Machine Live Migration Mechanism Function
In traditional high performance computing systems, the result of calling the process

migrator by the load balancer is either success and transfer of the process or failure
and non-transfer of the process (Mousavi Khaneghah, E., Noorabad Ghahroodi, R.,
& Reyhani ShowkatAbad, A., 2018). From the perspective of the process migrator,
the inability to transfer the process means the occurrence of a situation that makes
it impossible to transfer the code or data, based on the mechanism used to transfer
the process. With this approach, if the process transfer fails, the mechanism used to
transfer code or data lacks transfer capability. This lack of capability can be due to
a) the impossibility of transferring the code from the source to the destination, b) the
inability to execute the code transferred to the destination, c) the inability to correctly

Azerbaijan Journal of High Performance Computing, 3 (2), 2020

156

transfer the processing status from the source to destination, d) Lack of sufficient
information transfer to start the execution of the process in the destination, e) Inability
of the mechanism to transfer data, and f) Inability to transfer data commensurate with
the needs of the migratory process in the destination.

By classifying the mentioned situations regarding the inability of the process
migrator's mechanism to transfer the process, it can be stated that the failure of the
activities related to the process migrator. It can be considered as a) transfer challenges
b) non-execution challenges c) incorrect destination challenges d) disproportionate
mechanism challenges, e) process status disruption challenges. In the traditional
high performance computing system, a virtual machine-based process migration
mechanism is used to manage transfer, non-execution, and process status challenges.

The virtual machine concept makes it possible for the process migrator to transfer
the virtual machine containing the process that requires the migration of a process
from the source to the destination to transfer the process. The transfer of the virtual
machine from the source to the destination focuses on the heterogeneous and the
possibility of executing the process. The virtual machine concept makes it possible
for the process migrator to transfer the virtual machine containing the process that
requires the migration of a process from the source to the destination to transfer the
process. The transfer of the virtual machine from the source-to-destination enables
the migration mechanism to continue processing in the destination. A virtual machine
migration mechanism is a set of activities performed to transfer the status of a virtual
machine, including memory pages and CPU state, from one physical machine to
another. Based on this definition, the virtual machine-based process migration function
can be considered in the form expressed in Eq.1.

As can be seen in Eq.1, the process migrator's function is a 2 * 2 matrix, which
is a function of the independent variable of the status of the migratory process. Eq.1
implicitly states that the application or process is running on the destination in the
virtual machine.

In Eq.1, the process state (t, e) variable indicates the process's status. The process
state variable is described based on two independent time variables and events that
lead to a process state change. Given that the process runs in a virtual machine, the
conceivable situations for the process can be considered according to the pattern
shown in Figure 1.

As shown in figure 1, the combinations of the two elements of the virtual machine
and the processor in the ready and running modes can be considered acceptable
states for the processor and the virtual machine. In figure 1, the virtual machine is
considered a process, making it possible to consider four states related to the ready
and running of the two vice-virtual machine processes and the migratory process.

Zeinab Sohrabi & Ehsan Mousavi Khaneghah

157

Figure 1 defines the suspension mode as well as the migration mode for the virtual
machine. Figure 1 shows that the virtual machine's suspension and migration status
are also considered the suspension and migration of the process. In high performance
computing systems, the concept of virtual machine-based process migration is based
on two general patterns of complete virtual machine migration or partial virtual machine
migration.

In the complete virtual machine migration pattern, the process of executing the virtual
machine in the source stops, and the virtual machine is transferred from the source
to the destination. In the partial virtual migration pattern, the data-related part of the
process is transferred from the virtual machine running in the source to the destination's
corresponding virtual machine. As in figure 1, in traditional high performance computing
systems, after changing from a suspended state to a partial or complete migration state,
the virtual machine cannot return and stop working. The function of the virtual machine-
based process migration in traditional high performance computing systems is based
on the existence of high trust in the migration implementation process, heterogeneous
management, and the management of the process implementation process.

The axial of the virtual machine-based process migration mechanism is based on
the fact that either the virtual machine transferred from the source to the destination,
implements the processing phase and the concept of virtual machine necessarily

Fig. 1 Processes and virtual machine states

Azerbaijan Journal of High Performance Computing, 3 (2), 2020

158

manages any heterogenous and challenges in virtual machine transfer or the
corresponding virtual machine in the destination, allows the process to continue its
execution process in the corresponding virtual machine by transferring status and data.
In the mechanism of migration of processors based on a virtual machine, the concept
of migration activity failure is not considered. The nature of the virtual machine-based
process migration mechanism is the feasibility of the process execution process in the
destination based on the virtual machine concept.

As can be seen in Eq.1, the virtual machine-based process migration element's
function is defined on a variable axis (state (vm & process)). This is due to the possibility
of considering dissimilar states for both the processing element and the virtual
machine. The variable (state (vm & process)) indicates the function description of the
process migrator. In a virtual machine-based process migration mechanism, unlike
other mechanisms defined for the operation of data-driven migration management
based on data and time, focuses are defined based on the status of the main elements
of migration.

In other mechanisms used by the process migrator, the activity's focus is on
reducing the process suspension time by changing the data transfer process. In other
mechanisms, the main assumption of the process migration mechanism design is that
the time required to transfer the code is negligible compared to the time required to
transfer the data. This means that these mechanisms define data-drivenness and how
data is transmitted in the shortest time or only the required data is transmitted. In a
virtual machine-based process migration mechanism, the virtual machine transfer time
or the virtual machine stop time in the source, and the virtual machine start operating in
the destination are negligible in many cases. Based on the virtual machine, time is not
a concept. There is no data-driven focus in a virtual machine-based process migration
mechanism either because data is transmitted as part of the virtual machine.

In the virtual machine mechanism, the function description is based on the status
of the process, the memory of the process, the dependence of the process on other
processes, and the virtual machine's status with the focus on the status of the process
and the virtual machine. The process state variable, the memory state of the process
in the virtual machine, and the IPC between the process and other processes are
defined based on two variables, time and event. During the execution process or as a
result of the event, the process's status, the process memory, or the interactions and
connections of the process with other processes may change.

4. What Means Dynamic and Interactive in Live Process Migration Terminology
In distributed exascale systems, dynamic and interactive events can occur at any

time in the execution time. A dynamic and interactive event causes the state of the
system descriptor parameters to change so that the mechanism (or mechanisms)
used by the constituent elements of the system manager cannot manage and execute
activities. The occurrence of a dynamic and interactive event and the state of the system

Zeinab Sohrabi & Ehsan Mousavi Khaneghah

159

is beneficial in terms of the migration mechanism's functioning. The process migration
mechanism does not collect information about its activities after being called by the
load balancer. This causes that after changing the system status and the parameters
describing the system status from the perspective of the process migrator, the system
status with the status considered by the process migrator that corresponds to the
system status at the time the call is by the load balancer, there is a difference.

The difference between the system's status from the point of view of the process
migrator and the current status of the system may change the cause of migration or the
status of the beneficiary in migration. This is especially true of the virtual machine-based
migration mechanism, which focuses on the status of the system and the beneficiary
in migration activities. In a virtual machine-based process migration mechanism,
the function is defined based on the process's status and the virtual machine. The
virtual machine-based process migration element did not collect information about
the system's status and the beneficiary in the migration activity, especially the status
related to the process and the virtual machine, and based on the information received
from the process migrator, the process starts working.

The load balancer's information is related to the moment t=Alpha, which has called
the process migrator. The process migrator does not change the data structure of the
process information and the virtual machine during the execution period of the process
migrator activities. This issue in traditional high performance computing systems,
because the status of the process and the virtual machine does not change, and the
status of the description of the source and destination, does not cause problems in the
implementation of virtual machine-based process migrator activities.

However, in distributed exascale systems, changing each of the beneficiaries'
status may make it impossible for the process migrator to continue to operate. Due to
this issue, the functional space of the process migrator can be considered as (<DState,
SState, VMState, PState>, Process, VM, <Transfer>). In defining the functional space
of the virtual machine-based process migrator, the focus of the definition is based
on the concept of the status of the process and the virtual machine and the source
and destination. The system's activity is defined on the two elements of the processor
and the virtual machine, and the activity that can be executed in the system is also
transferred.

According to Eq.1, as well as considering the migration system of virtual machine-
based processes and beneficiary in it, the effects of dynamic and interactive events
on the function of the migration of virtual machine-based processes can be based on
Figure 2.

As can be seen in figure 2, the occurrence of a dynamic and interactive event
can affect any of the factors that define the functional space of the manager and the
concept of the capabilities of the virtual machine in the process migrator process. When
a dynamic and interactive event occurs in the migration system, it may depend on the
status of the process, the virtual machine, the source, destination, and the capabilities

Azerbaijan Journal of High Performance Computing, 3 (2), 2020

160

of the virtual machine used to process the migration. The impact of the event on the
status of each of these factors may cause the virtual machine-based process migrator
to lack execution capability.

5. Challenges
Defining the functionality of a virtual machine-based process migrator is axial to

describing the situation. The occurrence of a dynamic and interactive event may also
change any of the descriptions used in the process migration system at any point
in the process of implementing the activities of the virtual machine-based process
migrator. This eliminates the need to change the function and descriptor function of the
process migrator. In distributed exascale systems, unlike traditional high performance
computing systems, the axial element of system activities is based on the concept
of global activity. Using the concept of global activity causes the space of influence
and influential of the process to change. In traditional high performance computing
systems, the process state definition space is one-dimensional because the process
is an abstract concept, while in a distributed exascale system changes to three-
dimensional (Process State, Communication State, Global Activity State).

In distributed exascale systems, the migration of virtual machine-based processes
due to a) the possibility of continuing to execute the process b) the possibility of
executing the process in heterogeneous environments the load balancer is also
responsible for transferring the process to create a responsive structure. In distributed
exascale systems, the migration of virtual machine-based processes must be capable
of transferring processes while maintaining communications and process interactions
with other global activity related to processing or other global activities. This causes

Fig. 2 The effects of dynamic and interactive events on the performance of the virtual
machine-based process migrator

Zeinab Sohrabi & Ehsan Mousavi Khaneghah

161

that in addition to the interaction space in the migration's useful function, processes
need to consider interactive pages and communication between processes.

In distributed exascale systems, if the process migrator's mechanism is a
mechanism other than a virtual machine-based process migrator, then the dynamic
and interactive nature of the computational element occurs. The source causes the
status of the computational element to change for the process. This change may
cause the constraints on the process to change so that either the cause of the process
migrator is violated or the process migrator needs to be created. This is also true for
the destination. The occurrence of a dynamic and interactive event may cause the
destination's conditions to change for the migratory process so that the cause of the
transfer to the computational element is violated, or the computational element can
accept the migratory process. This is while if the migration mechanism of the process
is based on a virtual machine, a dynamic and interactive event causes the status of
source or destination for the virtual machine as a process. This change may lead to
the cause of the process migrator being violated or the need for process migration,
the occurrence of a dynamic and interactive event may also affect the virtual machine
as a machine containing migratory processes. Thus, in distributed exascale systems,
dynamic and interactive events in each computational element and each migratory
process create a two-dimensional space.

6. Conclusion
Due to its ability to execute processes and use them in heterogeneous environments,

the virtual machine-based process migrator mechanism can be used in distributed
exascale systems and used in these environments as a process migrator mechanism.
The possibility of executing the process in the shortest possible time in the destination
and considering the process interactions as efficient features of this mechanism is
distributed. The focus of the virtual machine-based process migrator mechanism is on
the process's focus and the virtual machine. This causes the mechanism to be affected
by a dynamic and interactive event. The occurrence of a dynamic and interactive
event in the virtual machine-based process migrator mechanism, unlike other process
migrator mechanisms, is effective in two dimensions. Also, the need to redefine axial
activity from the processing element to the global activity element is another challenge
of applying this mechanism in distributed exascale systems.

Reference
Barak, A., & La'adan, O. (1998). The MOSIX multicomputer operating system for

high performance cluster computing. Future Generation Computer Systems, 13(4-
5), 361-372.

Barak, A., Guday, S., & Wheeler, R. G. (1993). The MOSIX distributed operating
system: load balancing for UNIX (Vol. 13). Berlin: Springer-Verlag.

Barham, P., Dragovic, B., et al. (2003). Xen and the art of virtualization. ACM

Azerbaijan Journal of High Performance Computing, 3 (2), 2020

162

SIGOPS operating systems review, 37(5), 164-177.
Chirammal, H. D., Mukhedkar, P., & Vettathu, A. (2016). Mastering KVM virtual-

ization. Packt Publishing Ltd.
Duolikun, D., Watanabe, R., Enokido, T., & Takizawa, M. (2017, March). An eco

migration of virtual machines in a server cluster. In 2017 IEEE 31st International
Conference on Advanced Information Networking and Applications (AINA) (pp.
1098-1105). IEEE.

Gharb, H., Khaneghah, E. M., et al. (2019) Challenges of execution trend in
distributed Exascale system. Journal of Distributed Computing and Systems, 2(1),
140-151.

Gholami, M. F., Daneshgar, F., Low, G., & Beydoun, G. (2016). Cloud migration
process - A survey, evaluation framework, and open challenges. Journal of Sys-
tems and Software, 120, 31-69.

Gupta, D., Cherkasova, L., Gardner, R., & Vahdat, A. (2006, November). En-
forcing performance isolation across virtual machines in Xen. In ACM/IFIP/USENIX
International Conference on Distributed Systems Platforms and Open Distributed
Processing (pp. 342-362). Springer, Berlin, Heidelberg.

Jain, N., Menache, I., Shepherd, F. B., & Naor, J. S. (2017). U.S. Patent No.
9,619,297. Washington, DC: U.S. Patent and Trademark Office.

Junior, P. S., Miorandi, D., & Pierre, G. (2020, December). Stateful Container Mi-
gration in Geo-Distributed Environments. In CloudCom 2020 12th IEEE International
Conference on Cloud Computing Technology and Science.

Khaneghah, E. M., ShowkatAbad, A. R., & Ghahroodi, R. N. (2018, February).
Challenges of process migration to support distributed exascale computing envi-
ronment. In Proceedings of the 2018 7th International Conference on Software and
Computer Applications (pp. 20-24).

Khaneghah, E. M., ShowkatAbad, A. R., et al. (2018). ExaMig matrix: Process
migration based on matrix definition of selecting destination in distributed exascale
environments. Azerbaijan Journal of High Performance Computing, 1(1), 20-41.

Kovari, A., & Dukan, P. (2012, September). KVM & OpenVZ virtualization based
IaaS open source cloud virtualization platforms: OpenNode, Proxmox VE. In 2012
IEEE 10th Jubilee International Symposium on Intelligent Systems and Informatics
(pp. 335-339). IEEE.

Milojičić, D. S., Douglis, F., et al. (2000). Process migration. ACM Computing
Surveys (CSUR), 32(3), 241-299.

Mousavi Khaneghah, E., Noorabad Ghahroodi, R., & Reyhani ShowkatAbad, A.
(2018). A mathematical multi-dimensional mechanism to improve process migra-
tion efficiency in peer-to-peer computing environments. Cogent Engineering, 5(1),
1458434.

Noshy, M., Ibrahim, A., & Ali, H. A. (2018). Optimization of live virtual machine
migration in cloud computing: A survey and future directions. Journal of Network

Zeinab Sohrabi & Ehsan Mousavi Khaneghah

163

and Computer Applications, 110, 1-10.
Pickartz, S., Breitbart, J., & Lankes, S. (2016). Implications of process-migra-

tion in virtualized environments. In Proceedings of the 1st COSH Workshop on
Co-Scheduling of HPC Applications (p. 31).

Pickartz, S., Lankes, S., Monti, A., Clauss, C., & Breitbart, J. (2016, July). Appli-
cation migration in HPC - A driver of the exascale era?. In 2016 International Con-
ference on High Performance Computing & Simulation (HPCS) (pp. 318-325). IEEE.

Reghenzani, F., Pozzi, G., et al. (2016, September). The MIG framework: en-
abling transparent process migration in Open MPI. In Proceedings of the 23rd Euro-
pean MPI Users' Group Meeting (pp. 64-73).

Singh, G., & Gupta, P. (2016, September). A review on migration techniques and
challenges in live virtual machine migration. In 2016 5th International Conference on
Reliability, Infocom Technologies and Optimization (Trends and Future Directions)
(ICRITO) (pp. 542-546). IEEE.

Smith, J. M. (1988). A survey of process migration mechanisms. ACM SIGOPS
Operating Systems Review, 22(3), 28-40.

Steketee, E., Zhu, W. P., & Moseley, P. (1994, June). Implementation of process
migration in amoeba. In 14th International Conference on Distributed Computing
Systems (pp. 194-201). IEEE. J. M. Smith, "A survey of process migration mecha-
nisms," ACM SIGOPS Operating Systems Review, vol. 22, no. 3, pp. 28-40, 1988.

Takagawa, Y., & Matsubara, K. (2019). Yet another container migration on
FreeBSD. In AsiaBSDCon 2019 Proceedings (pp. 97-102).

Tanenbaum, A. S., Van Renesse, R., et al. (1990). Experiences with the Amoeba
distributed operating system. Communications of the ACM, 33(12), 46-63.

Varadarajan, S., & Ruscio, J. (2009). U.S. Patent No. 7,536,591. Washington,
DC: U.S. Patent and Trademark Office.

Zheng, Y., & Nicol, D. M. (2011, June). A virtual time system for openvz-based
network emulations. In 2011 IEEE Workshop on Principles of Advanced and Distrib-
uted Simulation (pp. 1-10). IEEE.

Submitted: 20.07.2020
Accepted: 12.11.2020

Azerbaijan Journal of High Performance Computing, 3 (2), 2020

