
255

A Study of the Effect of the Parameters for
Optimizing Profit Using Simulated Annealing to
Solve Shelf Space Allocation Problem
Romit S. Beed, Ankita Sarkar, Raya Sinha, Deboshruti Dasgupta

St. Xavier’s College (Autonomous), Kolkata, India, rbeed@yahoo.com, ankita1397sarkar@
gmail.com, rayamomsinha@gmail.com, deboshrutidg.96@gmail.com

*Correspondence:
Romit S. Beed, St. Xavier’s

College (Autonomous),
Kolkata, India, rbeed@

yahoo.com

Abstract
Shelf space allocation has always remained a crucial issue for any
retail store, as space is a limited resource. This work proposes a
model that uses a hyper-heuristic approach to allocate products on
shelves to maximize the retailer's profit. This work has concentrated
on providing a solution specifically for a consumer packaged goods
store. There exist multiple conflicting objectives and constraints
which influence the profit. The consequence is a non-linear
programming model having a complex objective function, which is
solved by using multiple neighborhood approaches using simulated
annealing as simulated annealing is a useful tool for solving
complex combinatorial optimization problems. Detailed analysis
of the proposed technique of using annealing and reheating has
revealed the effectiveness in profit maximization in the shelf space
allocation problem. Various simulated annealing parameters have
been studied in this article, which provides optimum values for
maximizing profit.

Keyword: Shelf Space Allocation, Optimization Problem,
Simulated Annealing, Hyper-Heuristic.

Azerbaijan Journal of High Performance Computing, Vol 3, Issue 2, 2020, pp. 255-271
https://doi.org/10.32010/26166127.2020.3.2.255.268

1. Introduction
Shelf space is always a finite resource for a retailer of a multi-purpose utility store.

The Shelf space allocation problem is defined as the distribution of the appropriate
amount of shelf space among various products, along with their locations, in a store,
such that the total profit and the purchaser fulfillment are maximized. A shelf is defined
as a horizontal, stable, and quadrangular structure used to withstand, hold, and display
objects. Again, the rack is a stack of shelves. The objective of Shelf Space Allocation
Problem is to maximize category sales and profits, without any regard to any particular
bound (Retailer's goal) or to improve the sales of any particular brand, thus wanting to
allocate as much space as possible to one particular product (Manufacturer's goal).
Such a nature whose decision variables have discrete and finite domains is termed a
combinatorial problem. As a result, a combinatorial problem has a finite number of
solutions, although typically exponential in the number of variables.

In most cases of such problems, an instance may have more than one feasible
solution. Although it is enough to find any solution that satisfies the constraints for
search and decision problems, optimization problems discover a better solution than
the others according to some measure. The customary way to evaluate the goodness
of a solution with respect to the others is to define a fitness function to assess the utility
of the solution that may influence the decision process.

In many problem formulations, constraints are split into hard constraints and soft
constraints. Hard constraints define the restrictions that cannot be violated for any
reason. Their violation prevents a solution from being feasible at all, thereby defining
the search space's boundaries. Soft constraints, on the other hand, maybe violated,
as their violation does not hinder feasibility. However, it is done at the price of a higher
solution cost. Thus, care should be taken to minimize their violations by the optimization
process. Soft constraints are the most common way to define an objective function.
The in-store factors positively influence the choice of consumers. Rather than just
displaying the merchandising, a creative product arrangement on the shelves
becomes quintessential to increasing the perceptibility, consumer responsiveness,
and demand for the products, in turn resulting in better performance.

A multi-objective optimization problem (MOOP) combines several objectives that
decide the ultimate outcome. Generally, these objectives influence one another in a
complex and conflicting manner (Ombuki et al., 2006). The main aim is to find a set of
values for these objectives to optimize the overall problem. Goldberg states that multi-
objective optimization is the method of optimizing multiple conflicting objectives,
subject to a set of constraints. In these problems, it is observed that there is no specific
solution that minimizes, at the same time, each objective completely, but to a limit
beyond which the other objective(s) will be compromised as a consequence
(Goldberg, 1989). After procuring a specific solution, one of the chief aims of MOOPs
is to compare it with other solutions and measure the improvement in this solution with
respect to the current set of solutions (Haupt and Haupt, 2004). A multi-objective
problem with several conflicting objectives may be framed into a one-objective scalar
function. This well-known technique, known as the weighted-sum method or Single
Objective Evolutionary Algorithm (SOEA), is an a priori technique based on the "linear
aggregation of functions” principle (Arulmozhiyal and Jubril, 2012). The weighted-sum
method cuts down to a positively weighted convex sum of the objectives, as follows:

𝑚𝑚𝑚𝑚𝑚𝑚$𝑤𝑤!𝑓𝑓!(𝑥𝑥), 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒	
"

!#$

$𝑤𝑤! = 1
"

!#$

; 	𝑤𝑤! > 0;𝑤𝑤! 	∀	𝑚𝑚

Various scalarization procedures have been anticipated in the past. Zadeh
promoted the weighted sum technique as a classical approach for explaining such
problems (Zadeh, 1963). In this technique, the scalarization of a set of contradictory
objective functions is done by pre-multiplying each objective function with already
defined weights. However, despite the technique being straightforward and
computationally proficient, it may fail to explore all solutions given that the true Pareto
front is non-convex (Konak et al.,2006).

Simulated annealing (SA) is a useful tool for solving complex combinatorial
optimization problems. Simulated annealing is a type of local search heuristic which is
enthused from the physical process of annealing of solids. An advantage of this
method is that it never gets trapped in local maxima, which are useful in such complex
problems. It also provides a better solution quality and enhances computational
efficiency. However, evolutionary algorithms, such as the SA, were mostly used to solve
a single objective function due to its 'search-from-a-point' nature. This can be extended
to solve the multi-objective optimization problem where the general aim is to find a set
of solutions called the pareto set, all of which are equally important in the search space
and obtains global optimal solutions. SA can be applied for such multi-objective
problems by using a weighted sum method. Simulated Annealing has the upper hand
due to its probabilistic nature. Shelf Space Optimization is an important topic being
worked upon to capitalize on the goods' availability in their product line at the least
cost to operations. This project focuses on the retailer's perspective and aims to
allocate shelf space in a way to maximize profit (sales).

2. Literature Survey
Research in shelf space allocation started back in the 1960s when a pragmatic

study was made for three products from eight chain stores. A significant relationship
was found between shelf facings and sales (Kotzan and Evanson, 1969). Similar
experiments were carried out to include products from two brands of two classes, salt
and coffee cream. A relationship was established between the facings of shelf and
sales (Cox, 1970). Space elasticity was defined as “the ratio of relative change in unit
sales to relative change in unit sales in shelf space” (Curhan,1972). A study for the
affinity effects between products where space was manipulated to improve
complimentary shopping by inserting such products together was performed (Dreze
et al.,1994). The outcomes depicted that co-related merchandising resulted in a
positive boost of sales (over 5%) on tested products. Moreover, it was concluded that
the location effect of a shelf has a more significant impact on the number of facings.

A model was presented for Shelf Space Allocation in 1981 using geometric
programming and heuristics constraints for optimization (Corstjens and Doyle, 1981).
Their idea was based on the demands of the product along with their allowable
capacities. A simplified version of the previous model was presented (Yang and Chen,
1999), which was the first to consider the number of facings of a product using a
greedy knapsack approach to optimize. An extension of this model, considering
product affinity, was produced. They used multiple problem neighborhood moves to
optimize the non-linear function. A different model from the Yang and Chen model was
proposed and worked on(Hwang et al.,2005). The difference was because the new
model was formulated by amalgamating location effects. A location effect factor was
implemented in the objective function, with constraints similar to previous models.
Russell and Urban were the first two authors who considered the products as part of
the family that can be grounded on diversity in characteristics like brand, flavor, price,
etc. (Russell and Urban, 2010). Products of the same family should be kept together.
A model was developed based on a retailer's decisions for product prices, display
facing areas, display orientations, and shelf-space locations in a product category
using branch and bound (Murray et al.,2010).

Simulated annealing (SA) was proposed by S. Kirkpatrick (Kirkpatrick et al., 1983).
Various engineering planning and manufacturing problems can be modeled as a cost
function that needs to be minimized or maximized over a set of distinct variables.

256

1. Introduction
Shelf space is always a finite resource for a retailer of a multi-purpose utility store.

The Shelf space allocation problem is defined as the distribution of the appropriate
amount of shelf space among various products, along with their locations, in a store,
such that the total profit and the purchaser fulfillment are maximized. A shelf is defined
as a horizontal, stable, and quadrangular structure used to withstand, hold, and display
objects. Again, the rack is a stack of shelves. The objective of Shelf Space Allocation
Problem is to maximize category sales and profits, without any regard to any particular
bound (Retailer's goal) or to improve the sales of any particular brand, thus wanting to
allocate as much space as possible to one particular product (Manufacturer's goal).
Such a nature whose decision variables have discrete and finite domains is termed a
combinatorial problem. As a result, a combinatorial problem has a finite number of
solutions, although typically exponential in the number of variables.

In most cases of such problems, an instance may have more than one feasible
solution. Although it is enough to find any solution that satisfies the constraints for
search and decision problems, optimization problems discover a better solution than
the others according to some measure. The customary way to evaluate the goodness
of a solution with respect to the others is to define a fitness function to assess the utility
of the solution that may influence the decision process.

In many problem formulations, constraints are split into hard constraints and soft
constraints. Hard constraints define the restrictions that cannot be violated for any
reason. Their violation prevents a solution from being feasible at all, thereby defining
the search space's boundaries. Soft constraints, on the other hand, maybe violated,
as their violation does not hinder feasibility. However, it is done at the price of a higher
solution cost. Thus, care should be taken to minimize their violations by the optimization
process. Soft constraints are the most common way to define an objective function.
The in-store factors positively influence the choice of consumers. Rather than just
displaying the merchandising, a creative product arrangement on the shelves
becomes quintessential to increasing the perceptibility, consumer responsiveness,
and demand for the products, in turn resulting in better performance.

A multi-objective optimization problem (MOOP) combines several objectives that
decide the ultimate outcome. Generally, these objectives influence one another in a
complex and conflicting manner (Ombuki et al., 2006). The main aim is to find a set of
values for these objectives to optimize the overall problem. Goldberg states that multi-
objective optimization is the method of optimizing multiple conflicting objectives,
subject to a set of constraints. In these problems, it is observed that there is no specific
solution that minimizes, at the same time, each objective completely, but to a limit
beyond which the other objective(s) will be compromised as a consequence
(Goldberg, 1989). After procuring a specific solution, one of the chief aims of MOOPs
is to compare it with other solutions and measure the improvement in this solution with
respect to the current set of solutions (Haupt and Haupt, 2004). A multi-objective
problem with several conflicting objectives may be framed into a one-objective scalar
function. This well-known technique, known as the weighted-sum method or Single
Objective Evolutionary Algorithm (SOEA), is an a priori technique based on the "linear
aggregation of functions” principle (Arulmozhiyal and Jubril, 2012). The weighted-sum
method cuts down to a positively weighted convex sum of the objectives, as follows:

𝑚𝑚𝑚𝑚𝑚𝑚$𝑤𝑤!𝑓𝑓!(𝑥𝑥), 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒	
"

!#$

$𝑤𝑤! = 1
"

!#$

; 	𝑤𝑤! > 0;𝑤𝑤! 	∀	𝑚𝑚

Various scalarization procedures have been anticipated in the past. Zadeh
promoted the weighted sum technique as a classical approach for explaining such
problems (Zadeh, 1963). In this technique, the scalarization of a set of contradictory
objective functions is done by pre-multiplying each objective function with already
defined weights. However, despite the technique being straightforward and
computationally proficient, it may fail to explore all solutions given that the true Pareto
front is non-convex (Konak et al.,2006).

Simulated annealing (SA) is a useful tool for solving complex combinatorial
optimization problems. Simulated annealing is a type of local search heuristic which is
enthused from the physical process of annealing of solids. An advantage of this
method is that it never gets trapped in local maxima, which are useful in such complex
problems. It also provides a better solution quality and enhances computational
efficiency. However, evolutionary algorithms, such as the SA, were mostly used to solve
a single objective function due to its 'search-from-a-point' nature. This can be extended
to solve the multi-objective optimization problem where the general aim is to find a set
of solutions called the pareto set, all of which are equally important in the search space
and obtains global optimal solutions. SA can be applied for such multi-objective
problems by using a weighted sum method. Simulated Annealing has the upper hand
due to its probabilistic nature. Shelf Space Optimization is an important topic being
worked upon to capitalize on the goods' availability in their product line at the least
cost to operations. This project focuses on the retailer's perspective and aims to
allocate shelf space in a way to maximize profit (sales).

2. Literature Survey
Research in shelf space allocation started back in the 1960s when a pragmatic

study was made for three products from eight chain stores. A significant relationship
was found between shelf facings and sales (Kotzan and Evanson, 1969). Similar
experiments were carried out to include products from two brands of two classes, salt
and coffee cream. A relationship was established between the facings of shelf and
sales (Cox, 1970). Space elasticity was defined as “the ratio of relative change in unit
sales to relative change in unit sales in shelf space” (Curhan,1972). A study for the
affinity effects between products where space was manipulated to improve
complimentary shopping by inserting such products together was performed (Dreze
et al.,1994). The outcomes depicted that co-related merchandising resulted in a
positive boost of sales (over 5%) on tested products. Moreover, it was concluded that
the location effect of a shelf has a more significant impact on the number of facings.

A model was presented for Shelf Space Allocation in 1981 using geometric
programming and heuristics constraints for optimization (Corstjens and Doyle, 1981).
Their idea was based on the demands of the product along with their allowable
capacities. A simplified version of the previous model was presented (Yang and Chen,
1999), which was the first to consider the number of facings of a product using a
greedy knapsack approach to optimize. An extension of this model, considering
product affinity, was produced. They used multiple problem neighborhood moves to
optimize the non-linear function. A different model from the Yang and Chen model was
proposed and worked on(Hwang et al.,2005). The difference was because the new
model was formulated by amalgamating location effects. A location effect factor was
implemented in the objective function, with constraints similar to previous models.
Russell and Urban were the first two authors who considered the products as part of
the family that can be grounded on diversity in characteristics like brand, flavor, price,
etc. (Russell and Urban, 2010). Products of the same family should be kept together.
A model was developed based on a retailer's decisions for product prices, display
facing areas, display orientations, and shelf-space locations in a product category
using branch and bound (Murray et al.,2010).

Simulated annealing (SA) was proposed by S. Kirkpatrick (Kirkpatrick et al., 1983).
Various engineering planning and manufacturing problems can be modeled as a cost
function that needs to be minimized or maximized over a set of distinct variables.

Romit S. Beed, et al.

257

1. Introduction
Shelf space is always a finite resource for a retailer of a multi-purpose utility store.

The Shelf space allocation problem is defined as the distribution of the appropriate
amount of shelf space among various products, along with their locations, in a store,
such that the total profit and the purchaser fulfillment are maximized. A shelf is defined
as a horizontal, stable, and quadrangular structure used to withstand, hold, and display
objects. Again, the rack is a stack of shelves. The objective of Shelf Space Allocation
Problem is to maximize category sales and profits, without any regard to any particular
bound (Retailer's goal) or to improve the sales of any particular brand, thus wanting to
allocate as much space as possible to one particular product (Manufacturer's goal).
Such a nature whose decision variables have discrete and finite domains is termed a
combinatorial problem. As a result, a combinatorial problem has a finite number of
solutions, although typically exponential in the number of variables.

In most cases of such problems, an instance may have more than one feasible
solution. Although it is enough to find any solution that satisfies the constraints for
search and decision problems, optimization problems discover a better solution than
the others according to some measure. The customary way to evaluate the goodness
of a solution with respect to the others is to define a fitness function to assess the utility
of the solution that may influence the decision process.

In many problem formulations, constraints are split into hard constraints and soft
constraints. Hard constraints define the restrictions that cannot be violated for any
reason. Their violation prevents a solution from being feasible at all, thereby defining
the search space's boundaries. Soft constraints, on the other hand, maybe violated,
as their violation does not hinder feasibility. However, it is done at the price of a higher
solution cost. Thus, care should be taken to minimize their violations by the optimization
process. Soft constraints are the most common way to define an objective function.
The in-store factors positively influence the choice of consumers. Rather than just
displaying the merchandising, a creative product arrangement on the shelves
becomes quintessential to increasing the perceptibility, consumer responsiveness,
and demand for the products, in turn resulting in better performance.

A multi-objective optimization problem (MOOP) combines several objectives that
decide the ultimate outcome. Generally, these objectives influence one another in a
complex and conflicting manner (Ombuki et al., 2006). The main aim is to find a set of
values for these objectives to optimize the overall problem. Goldberg states that multi-
objective optimization is the method of optimizing multiple conflicting objectives,
subject to a set of constraints. In these problems, it is observed that there is no specific
solution that minimizes, at the same time, each objective completely, but to a limit
beyond which the other objective(s) will be compromised as a consequence
(Goldberg, 1989). After procuring a specific solution, one of the chief aims of MOOPs
is to compare it with other solutions and measure the improvement in this solution with
respect to the current set of solutions (Haupt and Haupt, 2004). A multi-objective
problem with several conflicting objectives may be framed into a one-objective scalar
function. This well-known technique, known as the weighted-sum method or Single
Objective Evolutionary Algorithm (SOEA), is an a priori technique based on the "linear
aggregation of functions” principle (Arulmozhiyal and Jubril, 2012). The weighted-sum
method cuts down to a positively weighted convex sum of the objectives, as follows:

𝑚𝑚𝑚𝑚𝑚𝑚$𝑤𝑤!𝑓𝑓!(𝑥𝑥), 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒	
"

!#$

$𝑤𝑤! = 1
"

!#$

; 	𝑤𝑤! > 0;𝑤𝑤! 	∀	𝑚𝑚

Various scalarization procedures have been anticipated in the past. Zadeh
promoted the weighted sum technique as a classical approach for explaining such
problems (Zadeh, 1963). In this technique, the scalarization of a set of contradictory
objective functions is done by pre-multiplying each objective function with already
defined weights. However, despite the technique being straightforward and
computationally proficient, it may fail to explore all solutions given that the true Pareto
front is non-convex (Konak et al.,2006).

Simulated annealing (SA) is a useful tool for solving complex combinatorial
optimization problems. Simulated annealing is a type of local search heuristic which is
enthused from the physical process of annealing of solids. An advantage of this
method is that it never gets trapped in local maxima, which are useful in such complex
problems. It also provides a better solution quality and enhances computational
efficiency. However, evolutionary algorithms, such as the SA, were mostly used to solve
a single objective function due to its 'search-from-a-point' nature. This can be extended
to solve the multi-objective optimization problem where the general aim is to find a set
of solutions called the pareto set, all of which are equally important in the search space
and obtains global optimal solutions. SA can be applied for such multi-objective
problems by using a weighted sum method. Simulated Annealing has the upper hand
due to its probabilistic nature. Shelf Space Optimization is an important topic being
worked upon to capitalize on the goods' availability in their product line at the least
cost to operations. This project focuses on the retailer's perspective and aims to
allocate shelf space in a way to maximize profit (sales).

2. Literature Survey
Research in shelf space allocation started back in the 1960s when a pragmatic

study was made for three products from eight chain stores. A significant relationship
was found between shelf facings and sales (Kotzan and Evanson, 1969). Similar
experiments were carried out to include products from two brands of two classes, salt
and coffee cream. A relationship was established between the facings of shelf and
sales (Cox, 1970). Space elasticity was defined as “the ratio of relative change in unit
sales to relative change in unit sales in shelf space” (Curhan,1972). A study for the
affinity effects between products where space was manipulated to improve
complimentary shopping by inserting such products together was performed (Dreze
et al.,1994). The outcomes depicted that co-related merchandising resulted in a
positive boost of sales (over 5%) on tested products. Moreover, it was concluded that
the location effect of a shelf has a more significant impact on the number of facings.

A model was presented for Shelf Space Allocation in 1981 using geometric
programming and heuristics constraints for optimization (Corstjens and Doyle, 1981).
Their idea was based on the demands of the product along with their allowable
capacities. A simplified version of the previous model was presented (Yang and Chen,
1999), which was the first to consider the number of facings of a product using a
greedy knapsack approach to optimize. An extension of this model, considering
product affinity, was produced. They used multiple problem neighborhood moves to
optimize the non-linear function. A different model from the Yang and Chen model was
proposed and worked on(Hwang et al.,2005). The difference was because the new
model was formulated by amalgamating location effects. A location effect factor was
implemented in the objective function, with constraints similar to previous models.
Russell and Urban were the first two authors who considered the products as part of
the family that can be grounded on diversity in characteristics like brand, flavor, price,
etc. (Russell and Urban, 2010). Products of the same family should be kept together.
A model was developed based on a retailer's decisions for product prices, display
facing areas, display orientations, and shelf-space locations in a product category
using branch and bound (Murray et al.,2010).

Simulated annealing (SA) was proposed by S. Kirkpatrick (Kirkpatrick et al., 1983).
Various engineering planning and manufacturing problems can be modeled as a cost
function that needs to be minimized or maximized over a set of distinct variables.

Azerbaijan Journal of High Performance Computing, 3 (2), 2020

258

1. Introduction
Shelf space is always a finite resource for a retailer of a multi-purpose utility store.

The Shelf space allocation problem is defined as the distribution of the appropriate
amount of shelf space among various products, along with their locations, in a store,
such that the total profit and the purchaser fulfillment are maximized. A shelf is defined
as a horizontal, stable, and quadrangular structure used to withstand, hold, and display
objects. Again, the rack is a stack of shelves. The objective of Shelf Space Allocation
Problem is to maximize category sales and profits, without any regard to any particular
bound (Retailer's goal) or to improve the sales of any particular brand, thus wanting to
allocate as much space as possible to one particular product (Manufacturer's goal).
Such a nature whose decision variables have discrete and finite domains is termed a
combinatorial problem. As a result, a combinatorial problem has a finite number of
solutions, although typically exponential in the number of variables.

In most cases of such problems, an instance may have more than one feasible
solution. Although it is enough to find any solution that satisfies the constraints for
search and decision problems, optimization problems discover a better solution than
the others according to some measure. The customary way to evaluate the goodness
of a solution with respect to the others is to define a fitness function to assess the utility
of the solution that may influence the decision process.

In many problem formulations, constraints are split into hard constraints and soft
constraints. Hard constraints define the restrictions that cannot be violated for any
reason. Their violation prevents a solution from being feasible at all, thereby defining
the search space's boundaries. Soft constraints, on the other hand, maybe violated,
as their violation does not hinder feasibility. However, it is done at the price of a higher
solution cost. Thus, care should be taken to minimize their violations by the optimization
process. Soft constraints are the most common way to define an objective function.
The in-store factors positively influence the choice of consumers. Rather than just
displaying the merchandising, a creative product arrangement on the shelves
becomes quintessential to increasing the perceptibility, consumer responsiveness,
and demand for the products, in turn resulting in better performance.

A multi-objective optimization problem (MOOP) combines several objectives that
decide the ultimate outcome. Generally, these objectives influence one another in a
complex and conflicting manner (Ombuki et al., 2006). The main aim is to find a set of
values for these objectives to optimize the overall problem. Goldberg states that multi-
objective optimization is the method of optimizing multiple conflicting objectives,
subject to a set of constraints. In these problems, it is observed that there is no specific
solution that minimizes, at the same time, each objective completely, but to a limit
beyond which the other objective(s) will be compromised as a consequence
(Goldberg, 1989). After procuring a specific solution, one of the chief aims of MOOPs
is to compare it with other solutions and measure the improvement in this solution with
respect to the current set of solutions (Haupt and Haupt, 2004). A multi-objective
problem with several conflicting objectives may be framed into a one-objective scalar
function. This well-known technique, known as the weighted-sum method or Single
Objective Evolutionary Algorithm (SOEA), is an a priori technique based on the "linear
aggregation of functions” principle (Arulmozhiyal and Jubril, 2012). The weighted-sum
method cuts down to a positively weighted convex sum of the objectives, as follows:

𝑚𝑚𝑚𝑚𝑚𝑚$𝑤𝑤!𝑓𝑓!(𝑥𝑥), 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒	
"

!#$

$𝑤𝑤! = 1
"

!#$

; 	𝑤𝑤! > 0;𝑤𝑤! 	∀	𝑚𝑚

Various scalarization procedures have been anticipated in the past. Zadeh
promoted the weighted sum technique as a classical approach for explaining such
problems (Zadeh, 1963). In this technique, the scalarization of a set of contradictory
objective functions is done by pre-multiplying each objective function with already
defined weights. However, despite the technique being straightforward and
computationally proficient, it may fail to explore all solutions given that the true Pareto
front is non-convex (Konak et al.,2006).

Simulated annealing (SA) is a useful tool for solving complex combinatorial
optimization problems. Simulated annealing is a type of local search heuristic which is
enthused from the physical process of annealing of solids. An advantage of this
method is that it never gets trapped in local maxima, which are useful in such complex
problems. It also provides a better solution quality and enhances computational
efficiency. However, evolutionary algorithms, such as the SA, were mostly used to solve
a single objective function due to its 'search-from-a-point' nature. This can be extended
to solve the multi-objective optimization problem where the general aim is to find a set
of solutions called the pareto set, all of which are equally important in the search space
and obtains global optimal solutions. SA can be applied for such multi-objective
problems by using a weighted sum method. Simulated Annealing has the upper hand
due to its probabilistic nature. Shelf Space Optimization is an important topic being
worked upon to capitalize on the goods' availability in their product line at the least
cost to operations. This project focuses on the retailer's perspective and aims to
allocate shelf space in a way to maximize profit (sales).

2. Literature Survey
Research in shelf space allocation started back in the 1960s when a pragmatic

study was made for three products from eight chain stores. A significant relationship
was found between shelf facings and sales (Kotzan and Evanson, 1969). Similar
experiments were carried out to include products from two brands of two classes, salt
and coffee cream. A relationship was established between the facings of shelf and
sales (Cox, 1970). Space elasticity was defined as “the ratio of relative change in unit
sales to relative change in unit sales in shelf space” (Curhan,1972). A study for the
affinity effects between products where space was manipulated to improve
complimentary shopping by inserting such products together was performed (Dreze
et al.,1994). The outcomes depicted that co-related merchandising resulted in a
positive boost of sales (over 5%) on tested products. Moreover, it was concluded that
the location effect of a shelf has a more significant impact on the number of facings.

A model was presented for Shelf Space Allocation in 1981 using geometric
programming and heuristics constraints for optimization (Corstjens and Doyle, 1981).
Their idea was based on the demands of the product along with their allowable
capacities. A simplified version of the previous model was presented (Yang and Chen,
1999), which was the first to consider the number of facings of a product using a
greedy knapsack approach to optimize. An extension of this model, considering
product affinity, was produced. They used multiple problem neighborhood moves to
optimize the non-linear function. A different model from the Yang and Chen model was
proposed and worked on(Hwang et al.,2005). The difference was because the new
model was formulated by amalgamating location effects. A location effect factor was
implemented in the objective function, with constraints similar to previous models.
Russell and Urban were the first two authors who considered the products as part of
the family that can be grounded on diversity in characteristics like brand, flavor, price,
etc. (Russell and Urban, 2010). Products of the same family should be kept together.
A model was developed based on a retailer's decisions for product prices, display
facing areas, display orientations, and shelf-space locations in a product category
using branch and bound (Murray et al.,2010).

Simulated annealing (SA) was proposed by S. Kirkpatrick (Kirkpatrick et al., 1983).
Various engineering planning and manufacturing problems can be modeled as a cost
function that needs to be minimized or maximized over a set of distinct variables.
Simulated Annealing is used to deal with problems that cannot be solved in polynomial
time: NP-hard problems. Simulated annealing is applied to different types of problems,
including traveling salesman problems (Wang et al., 2009), Job Shop scheduling
(Laarhoven et al., 1992), and Shelf space allocation problems (Erol et al.,2015). The
results produced by SA are susceptible to the annealing schedule and how the
neighborhood is searched; that is, values of initial temperature, final temperature,
cooling coefficient, and the number of moves in each loop's neighborhood affect the
results produced. The main essence of the SA algorithm lies in the cooling schedule.
Better results are obtained if the cooling schedule is big. However, if the cooling
schedule is too big, it wastes time in the loop. If the cooling schedule is too short, it
may fail to find the optimal solution. The main disadvantage of the algorithm is the
considerable running time. Nevertheless, it is recouped by the simplicity and ease of
application to different problems. This paper suggests an innovative technique to
optimize profit through better store layout in the light of modern-day customer
demands.

3. Problem Formulation
'Shelf space' with respect to any retail store is an essential and limited resource. In

this paper, allocating products on the shelves has been optimized by keeping in mind
the various conflicting objectives and the constraints to which this problem is subjected
to. This paper proposes a 3-dimensional shelf space allocation model where the third-
dimension stems from the height of the rack. The first two dimensions are the length of
the shelf and the height of a shelf. The height of a rack can be considered to be the
summation of each shelf's height within the rack. The following information has been
collected from a retail store for evaluation: the selling price of each item present in the
retail store, length and height of the shelves, number of shelves in a rack, length and
height of each item, minimum and maximum units of facings that can be provided to
each product, total number of shelves being considered, total number of products that
are considered, affinity matrix of the products that will enable the identification of
frequent item-sets from retailer’s transaction history, location effect of each shelf, scale
parameter for demand function of an item, space elasticity factor of an item.

Profit is calculated based on the selling price of an item and the value of an item's
demand function over time. The demand model of a product depends on elasticity,
and in this model, it is expressed as a product of direct space elasticity, cross elasticity,
and location effect of a shelf. To fulfill the overall objective, it is required to consider
certain underlying objectives that may be conflicting in nature. The number of items
sold is directly related to the number of facings displayed of the product. Increasing
the number of facings of a product has a considerable effect on the sales of an item.
However, studies have suggested that the number of product facings has an upper
and lower boundary, a constraint considered by the model. Items that are frequently
purchased together are placed in close proximity to boost the sale of such items
together (Han et al., 2012). However, reducing the distance between items that are
frequently purchased together also reduces individual products' display, thus the
conflict. Since this problem is subject to multiple conflicting constraints, so, in order to
maximize the retailer's profit, multi-objective optimization becomes a necessity. A pilot
survey was conducted among 60 consumers to understand the preferences one
places while purchasing an item from the retail store. The weights obtained from them
were used to scalarizs the multiple objective problems into a single objective
optimization problem.

The problem is formulated for a given number of racks m in a shelf, with each rack
j having a demand impact factor Ƴj, where Ƴj³1. Racks at the eye level or nearer impact
customer sales than the shelves located in the upper or lower regions. Length facing
has been defined as the number of facings allocated to each item along the rack's
length. Stack coefficient is the number of facings that can be assigned height-wise.
The product of length facing and stack coefficient gives the total number of facings of
an item.

Thus, formulating the main objective function, as follows:
Max ∑ 		𝑤𝑤!𝑝𝑝" 	 ∗ 	 (1 − 𝑤𝑤!)𝐹𝐹"#

"$! (1)
Here, pi is the selling price of item i, and there are n items. Fi is the demand function

of item i.
Maximizing the demand for an item is done by maximizing the amount of visibility

of that product. The total number of facings that can be allotted to an item i can be
given as:

Si=∑ 𝑥𝑥"% ∗ 𝜋𝜋"%&
%$! (2)

where xij is the length of the shelf j allocated to item i or length facings.
𝜋𝜋ij is the height stack coefficient or the number of facings assigned to an item along

with shelf height.
𝜋𝜋"% = .'!

(!
/ (3)

Where 𝐻𝐻" is the height of the shelf and ℎ" is the height of item i.
The demand for an item is also affected by the location of the shelf it is assorted to.

Thus, the average location effect can be calculated as:

Ƴi=
∑ *!"∗,!"∗Ƴ"
#
"$%

.!
 (4)

The affinity factor for a pair of products is defined as a complex relationship
between the number of facings of product k and the cross-elasticity factor of item i with
item k. βik is the cross elasticity or affinity of an item k on item i. Cross-elasticity is
defined as the influence of the number of facings allotted to one item on another item's
sale. The affinity matrix is constructed with values in the range of 1 and -1. The closer
the value of affinity to 1, the more affine are the products. If the affinity value is zero,
then the affinity among the categories is indifferent. The affinity factor is represented
using the equation:

𝜌𝜌=∏ 𝑆𝑆/0!&#
/1" (5)

Now the demand function of item i is calculated as follows:
Fi = αi * 		𝑤𝑤2𝑆𝑆"

0! * 		𝑤𝑤3𝜌𝜌*		𝑤𝑤4Ƴi (6)
Here, αi is the scale factor for the demand function of item i, βi is the space elasticity

for item i, and Space elasticity for an item i is the measurement of the impact on a
product sale performance by increasing or decreasing its allocation of space within a
shelf.

The problem described in this paper that is the objective function is subject to all
the following constraints:

∑ 𝑙𝑙"#
"$! 𝑥𝑥"%≤ Lj, ∀j (7)

yij≤∏"%, ∀i, (8)
𝑠𝑠"&"# 	≤ 𝑠𝑠" ≤ 𝑠𝑠"&5* , ∀𝑖𝑖 (9)

yij∈{0,1}, ∀i, j (10)
xij	∈ {0} ∪ Z+,∀ i (11)

yij≤ xij, ∀i, j (12)
∑ 𝑦𝑦"%&
%$! = 1, ∀ i (13)

y"% ∗ 6%
7"

≥ 𝑥𝑥"% , ∀j (14)

Romit S. Beed, et al.

259

Simulated Annealing is used to deal with problems that cannot be solved in polynomial
time: NP-hard problems. Simulated annealing is applied to different types of problems,
including traveling salesman problems (Wang et al., 2009), Job Shop scheduling
(Laarhoven et al., 1992), and Shelf space allocation problems (Erol et al.,2015). The
results produced by SA are susceptible to the annealing schedule and how the
neighborhood is searched; that is, values of initial temperature, final temperature,
cooling coefficient, and the number of moves in each loop's neighborhood affect the
results produced. The main essence of the SA algorithm lies in the cooling schedule.
Better results are obtained if the cooling schedule is big. However, if the cooling
schedule is too big, it wastes time in the loop. If the cooling schedule is too short, it
may fail to find the optimal solution. The main disadvantage of the algorithm is the
considerable running time. Nevertheless, it is recouped by the simplicity and ease of
application to different problems. This paper suggests an innovative technique to
optimize profit through better store layout in the light of modern-day customer
demands.

3. Problem Formulation
'Shelf space' with respect to any retail store is an essential and limited resource. In

this paper, allocating products on the shelves has been optimized by keeping in mind
the various conflicting objectives and the constraints to which this problem is subjected
to. This paper proposes a 3-dimensional shelf space allocation model where the third-
dimension stems from the height of the rack. The first two dimensions are the length of
the shelf and the height of a shelf. The height of a rack can be considered to be the
summation of each shelf's height within the rack. The following information has been
collected from a retail store for evaluation: the selling price of each item present in the
retail store, length and height of the shelves, number of shelves in a rack, length and
height of each item, minimum and maximum units of facings that can be provided to
each product, total number of shelves being considered, total number of products that
are considered, affinity matrix of the products that will enable the identification of
frequent item-sets from retailer’s transaction history, location effect of each shelf, scale
parameter for demand function of an item, space elasticity factor of an item.

Profit is calculated based on the selling price of an item and the value of an item's
demand function over time. The demand model of a product depends on elasticity,
and in this model, it is expressed as a product of direct space elasticity, cross elasticity,
and location effect of a shelf. To fulfill the overall objective, it is required to consider
certain underlying objectives that may be conflicting in nature. The number of items
sold is directly related to the number of facings displayed of the product. Increasing
the number of facings of a product has a considerable effect on the sales of an item.
However, studies have suggested that the number of product facings has an upper
and lower boundary, a constraint considered by the model. Items that are frequently
purchased together are placed in close proximity to boost the sale of such items
together (Han et al., 2012). However, reducing the distance between items that are
frequently purchased together also reduces individual products' display, thus the
conflict. Since this problem is subject to multiple conflicting constraints, so, in order to
maximize the retailer's profit, multi-objective optimization becomes a necessity. A pilot
survey was conducted among 60 consumers to understand the preferences one
places while purchasing an item from the retail store. The weights obtained from them
were used to scalarizs the multiple objective problems into a single objective
optimization problem.

The problem is formulated for a given number of racks m in a shelf, with each rack
j having a demand impact factor Ƴj, where Ƴj³1. Racks at the eye level or nearer impact
customer sales than the shelves located in the upper or lower regions. Length facing
has been defined as the number of facings allocated to each item along the rack's
length. Stack coefficient is the number of facings that can be assigned height-wise.
The product of length facing and stack coefficient gives the total number of facings of
an item.

Thus, formulating the main objective function, as follows:
Max ∑ 		𝑤𝑤!𝑝𝑝" 	 ∗ 	 (1 − 𝑤𝑤!)𝐹𝐹"#

"$! (1)
Here, pi is the selling price of item i, and there are n items. Fi is the demand function

of item i.
Maximizing the demand for an item is done by maximizing the amount of visibility

of that product. The total number of facings that can be allotted to an item i can be
given as:

Si=∑ 𝑥𝑥"% ∗ 𝜋𝜋"%&
%$! (2)

where xij is the length of the shelf j allocated to item i or length facings.
𝜋𝜋ij is the height stack coefficient or the number of facings assigned to an item along

with shelf height.
𝜋𝜋"% = .'!

(!
/ (3)

Where 𝐻𝐻" is the height of the shelf and ℎ" is the height of item i.
The demand for an item is also affected by the location of the shelf it is assorted to.

Thus, the average location effect can be calculated as:

Ƴi=
∑ *!"∗,!"∗Ƴ"
#
"$%

.!
 (4)

The affinity factor for a pair of products is defined as a complex relationship
between the number of facings of product k and the cross-elasticity factor of item i with
item k. βik is the cross elasticity or affinity of an item k on item i. Cross-elasticity is
defined as the influence of the number of facings allotted to one item on another item's
sale. The affinity matrix is constructed with values in the range of 1 and -1. The closer
the value of affinity to 1, the more affine are the products. If the affinity value is zero,
then the affinity among the categories is indifferent. The affinity factor is represented
using the equation:

𝜌𝜌=∏ 𝑆𝑆/0!&#
/1" (5)

Now the demand function of item i is calculated as follows:
Fi = αi * 		𝑤𝑤2𝑆𝑆"

0! * 		𝑤𝑤3𝜌𝜌*		𝑤𝑤4Ƴi (6)
Here, αi is the scale factor for the demand function of item i, βi is the space elasticity

for item i, and Space elasticity for an item i is the measurement of the impact on a
product sale performance by increasing or decreasing its allocation of space within a
shelf.

The problem described in this paper that is the objective function is subject to all
the following constraints:

∑ 𝑙𝑙"#
"$! 𝑥𝑥"%≤ Lj, ∀j (7)

yij≤∏"%, ∀i, (8)
𝑠𝑠"&"# 	≤ 𝑠𝑠" ≤ 𝑠𝑠"&5* , ∀𝑖𝑖 (9)

yij∈{0,1}, ∀i, j (10)
xij	∈ {0} ∪ Z+,∀ i (11)

yij≤ xij, ∀i, j (12)
∑ 𝑦𝑦"%&
%$! = 1, ∀ i (13)

y"% ∗ 6%
7"

≥ 𝑥𝑥"% , ∀j (14)

Simulated Annealing is used to deal with problems that cannot be solved in polynomial
time: NP-hard problems. Simulated annealing is applied to different types of problems,
including traveling salesman problems (Wang et al., 2009), Job Shop scheduling
(Laarhoven et al., 1992), and Shelf space allocation problems (Erol et al.,2015). The
results produced by SA are susceptible to the annealing schedule and how the
neighborhood is searched; that is, values of initial temperature, final temperature,
cooling coefficient, and the number of moves in each loop's neighborhood affect the
results produced. The main essence of the SA algorithm lies in the cooling schedule.
Better results are obtained if the cooling schedule is big. However, if the cooling
schedule is too big, it wastes time in the loop. If the cooling schedule is too short, it
may fail to find the optimal solution. The main disadvantage of the algorithm is the
considerable running time. Nevertheless, it is recouped by the simplicity and ease of
application to different problems. This paper suggests an innovative technique to
optimize profit through better store layout in the light of modern-day customer
demands.

3. Problem Formulation
'Shelf space' with respect to any retail store is an essential and limited resource. In

this paper, allocating products on the shelves has been optimized by keeping in mind
the various conflicting objectives and the constraints to which this problem is subjected
to. This paper proposes a 3-dimensional shelf space allocation model where the third-
dimension stems from the height of the rack. The first two dimensions are the length of
the shelf and the height of a shelf. The height of a rack can be considered to be the
summation of each shelf's height within the rack. The following information has been
collected from a retail store for evaluation: the selling price of each item present in the
retail store, length and height of the shelves, number of shelves in a rack, length and
height of each item, minimum and maximum units of facings that can be provided to
each product, total number of shelves being considered, total number of products that
are considered, affinity matrix of the products that will enable the identification of
frequent item-sets from retailer’s transaction history, location effect of each shelf, scale
parameter for demand function of an item, space elasticity factor of an item.

Profit is calculated based on the selling price of an item and the value of an item's
demand function over time. The demand model of a product depends on elasticity,
and in this model, it is expressed as a product of direct space elasticity, cross elasticity,
and location effect of a shelf. To fulfill the overall objective, it is required to consider
certain underlying objectives that may be conflicting in nature. The number of items
sold is directly related to the number of facings displayed of the product. Increasing
the number of facings of a product has a considerable effect on the sales of an item.
However, studies have suggested that the number of product facings has an upper
and lower boundary, a constraint considered by the model. Items that are frequently
purchased together are placed in close proximity to boost the sale of such items
together (Han et al., 2012). However, reducing the distance between items that are
frequently purchased together also reduces individual products' display, thus the
conflict. Since this problem is subject to multiple conflicting constraints, so, in order to
maximize the retailer's profit, multi-objective optimization becomes a necessity. A pilot
survey was conducted among 60 consumers to understand the preferences one
places while purchasing an item from the retail store. The weights obtained from them
were used to scalarizs the multiple objective problems into a single objective
optimization problem.

The problem is formulated for a given number of racks m in a shelf, with each rack
j having a demand impact factor Ƴj, where Ƴj³1. Racks at the eye level or nearer impact
customer sales than the shelves located in the upper or lower regions. Length facing
has been defined as the number of facings allocated to each item along the rack's
length. Stack coefficient is the number of facings that can be assigned height-wise.
The product of length facing and stack coefficient gives the total number of facings of
an item.

Thus, formulating the main objective function, as follows:
Max ∑ 		𝑤𝑤!𝑝𝑝" 	 ∗ 	 (1 − 𝑤𝑤!)𝐹𝐹"#

"$! (1)
Here, pi is the selling price of item i, and there are n items. Fi is the demand function

of item i.
Maximizing the demand for an item is done by maximizing the amount of visibility

of that product. The total number of facings that can be allotted to an item i can be
given as:

Si=∑ 𝑥𝑥"% ∗ 𝜋𝜋"%&
%$! (2)

where xij is the length of the shelf j allocated to item i or length facings.
𝜋𝜋ij is the height stack coefficient or the number of facings assigned to an item along

with shelf height.
𝜋𝜋"% = .'!

(!
/ (3)

Where 𝐻𝐻" is the height of the shelf and ℎ" is the height of item i.
The demand for an item is also affected by the location of the shelf it is assorted to.

Thus, the average location effect can be calculated as:

Ƴi=
∑ *!"∗,!"∗Ƴ"
#
"$%

.!
 (4)

The affinity factor for a pair of products is defined as a complex relationship
between the number of facings of product k and the cross-elasticity factor of item i with
item k. βik is the cross elasticity or affinity of an item k on item i. Cross-elasticity is
defined as the influence of the number of facings allotted to one item on another item's
sale. The affinity matrix is constructed with values in the range of 1 and -1. The closer
the value of affinity to 1, the more affine are the products. If the affinity value is zero,
then the affinity among the categories is indifferent. The affinity factor is represented
using the equation:

𝜌𝜌=∏ 𝑆𝑆/0!&#
/1" (5)

Now the demand function of item i is calculated as follows:
Fi = αi * 		𝑤𝑤2𝑆𝑆"

0! * 		𝑤𝑤3𝜌𝜌*		𝑤𝑤4Ƴi (6)
Here, αi is the scale factor for the demand function of item i, βi is the space elasticity

for item i, and Space elasticity for an item i is the measurement of the impact on a
product sale performance by increasing or decreasing its allocation of space within a
shelf.

The problem described in this paper that is the objective function is subject to all
the following constraints:

∑ 𝑙𝑙"#
"$! 𝑥𝑥"%≤ Lj, ∀j (7)

yij≤∏"%, ∀i, (8)
𝑠𝑠"&"# 	≤ 𝑠𝑠" ≤ 𝑠𝑠"&5* , ∀𝑖𝑖 (9)

yij∈{0,1}, ∀i, j (10)
xij	∈ {0} ∪ Z+,∀ i (11)

yij≤ xij, ∀i, j (12)
∑ 𝑦𝑦"%&
%$! = 1, ∀ i (13)

y"% ∗ 6%
7"

≥ 𝑥𝑥"% , ∀j (14)

Table 1 : Survey of factors that can affect the sale of an item based on customer priorities

Factor Affecting Choice Of Cus-
tomer

Weights as-
signed

Votes
In Fa-
vour

Ratio Of
Weights

Selling Price of an item (pi) w1 22 0.367

Demand
of an item

(Fi)

Number Of Units
Displayed (Si)

w2 8 0.133

Affinity factor (ρ) w3 13 0.217
Shelf Location of the

Item (Yj)
w4 17 0.283

Azerbaijan Journal of High Performance Computing, 3 (2), 2020

260

Simulated Annealing is used to deal with problems that cannot be solved in polynomial
time: NP-hard problems. Simulated annealing is applied to different types of problems,
including traveling salesman problems (Wang et al., 2009), Job Shop scheduling
(Laarhoven et al., 1992), and Shelf space allocation problems (Erol et al.,2015). The
results produced by SA are susceptible to the annealing schedule and how the
neighborhood is searched; that is, values of initial temperature, final temperature,
cooling coefficient, and the number of moves in each loop's neighborhood affect the
results produced. The main essence of the SA algorithm lies in the cooling schedule.
Better results are obtained if the cooling schedule is big. However, if the cooling
schedule is too big, it wastes time in the loop. If the cooling schedule is too short, it
may fail to find the optimal solution. The main disadvantage of the algorithm is the
considerable running time. Nevertheless, it is recouped by the simplicity and ease of
application to different problems. This paper suggests an innovative technique to
optimize profit through better store layout in the light of modern-day customer
demands.

3. Problem Formulation
'Shelf space' with respect to any retail store is an essential and limited resource. In

this paper, allocating products on the shelves has been optimized by keeping in mind
the various conflicting objectives and the constraints to which this problem is subjected
to. This paper proposes a 3-dimensional shelf space allocation model where the third-
dimension stems from the height of the rack. The first two dimensions are the length of
the shelf and the height of a shelf. The height of a rack can be considered to be the
summation of each shelf's height within the rack. The following information has been
collected from a retail store for evaluation: the selling price of each item present in the
retail store, length and height of the shelves, number of shelves in a rack, length and
height of each item, minimum and maximum units of facings that can be provided to
each product, total number of shelves being considered, total number of products that
are considered, affinity matrix of the products that will enable the identification of
frequent item-sets from retailer’s transaction history, location effect of each shelf, scale
parameter for demand function of an item, space elasticity factor of an item.

Profit is calculated based on the selling price of an item and the value of an item's
demand function over time. The demand model of a product depends on elasticity,
and in this model, it is expressed as a product of direct space elasticity, cross elasticity,
and location effect of a shelf. To fulfill the overall objective, it is required to consider
certain underlying objectives that may be conflicting in nature. The number of items
sold is directly related to the number of facings displayed of the product. Increasing
the number of facings of a product has a considerable effect on the sales of an item.
However, studies have suggested that the number of product facings has an upper
and lower boundary, a constraint considered by the model. Items that are frequently
purchased together are placed in close proximity to boost the sale of such items
together (Han et al., 2012). However, reducing the distance between items that are
frequently purchased together also reduces individual products' display, thus the
conflict. Since this problem is subject to multiple conflicting constraints, so, in order to
maximize the retailer's profit, multi-objective optimization becomes a necessity. A pilot
survey was conducted among 60 consumers to understand the preferences one
places while purchasing an item from the retail store. The weights obtained from them
were used to scalarizs the multiple objective problems into a single objective
optimization problem.

The problem is formulated for a given number of racks m in a shelf, with each rack
j having a demand impact factor Ƴj, where Ƴj³1. Racks at the eye level or nearer impact
customer sales than the shelves located in the upper or lower regions. Length facing
has been defined as the number of facings allocated to each item along the rack's
length. Stack coefficient is the number of facings that can be assigned height-wise.
The product of length facing and stack coefficient gives the total number of facings of
an item.

Thus, formulating the main objective function, as follows:
Max ∑ 		𝑤𝑤!𝑝𝑝" 	 ∗ 	 (1 − 𝑤𝑤!)𝐹𝐹"#

"$! (1)
Here, pi is the selling price of item i, and there are n items. Fi is the demand function

of item i.
Maximizing the demand for an item is done by maximizing the amount of visibility

of that product. The total number of facings that can be allotted to an item i can be
given as:

Si=∑ 𝑥𝑥"% ∗ 𝜋𝜋"%&
%$! (2)

where xij is the length of the shelf j allocated to item i or length facings.
𝜋𝜋ij is the height stack coefficient or the number of facings assigned to an item along

with shelf height.
𝜋𝜋"% = .'!

(!
/ (3)

Where 𝐻𝐻" is the height of the shelf and ℎ" is the height of item i.
The demand for an item is also affected by the location of the shelf it is assorted to.

Thus, the average location effect can be calculated as:

Ƴi=
∑ *!"∗,!"∗Ƴ"
#
"$%

.!
 (4)

The affinity factor for a pair of products is defined as a complex relationship
between the number of facings of product k and the cross-elasticity factor of item i with
item k. βik is the cross elasticity or affinity of an item k on item i. Cross-elasticity is
defined as the influence of the number of facings allotted to one item on another item's
sale. The affinity matrix is constructed with values in the range of 1 and -1. The closer
the value of affinity to 1, the more affine are the products. If the affinity value is zero,
then the affinity among the categories is indifferent. The affinity factor is represented
using the equation:

𝜌𝜌=∏ 𝑆𝑆/0!&#
/1" (5)

Now the demand function of item i is calculated as follows:
Fi = αi * 		𝑤𝑤2𝑆𝑆"

0! * 		𝑤𝑤3𝜌𝜌*		𝑤𝑤4Ƴi (6)
Here, αi is the scale factor for the demand function of item i, βi is the space elasticity

for item i, and Space elasticity for an item i is the measurement of the impact on a
product sale performance by increasing or decreasing its allocation of space within a
shelf.

The problem described in this paper that is the objective function is subject to all
the following constraints:

∑ 𝑙𝑙"#
"$! 𝑥𝑥"%≤ Lj, ∀j (7)

yij≤∏"%, ∀i, (8)
𝑠𝑠"&"# 	≤ 𝑠𝑠" ≤ 𝑠𝑠"&5* , ∀𝑖𝑖 (9)

yij∈{0,1}, ∀i, j (10)
xij	∈ {0} ∪ Z+,∀ i (11)

yij≤ xij, ∀i, j (12)
∑ 𝑦𝑦"%&
%$! = 1, ∀ i (13)

y"% ∗ 6%
7"

≥ 𝑥𝑥"% , ∀j (14)

Romit S. Beed, et al.

In constraint (7), signifies the length of item i, 𝑥𝑥!" is the length facing allotted to an
item i, n is the total number of items that are considered, j refers to the current shelf, Lj
is the shelf length. In constraint (8), yij denotes an item's height facings, which should
be less than the calculated height coefficient for a given shelf. Constraints (7) and (8)
ensure that the items assigned to each shelf do not exceed the shelf's capacity, both
in terms of length and height. Constraint (9) determines the minimum and the maximum
number of facings that can be designated for each item. 𝑠𝑠! denotes the total facing
allotted to item i, which should be within a given minimum (𝑠𝑠!#!$) and maximum (𝑠𝑠!#%&)
boundary value. Constraints (10), (11), (12), (14) define the relationships of the
variables xij and yij. Constraint (13) is a cluster constraint that ensures that the same
type of items have to be displayed together on the shelf, where m denotes the total
number of shelves that the problem considers. Usually, retailers wish to preserve the
related items together in order to exhibit a large attractive block.

The allocation process is optimized using the hyper-heuristic learning mechanism
and simulated annealing to get the optimized placement of products, and finally, the
shelf space layout maximizes the retailer's profit. This paper considers one medium
instance (m=5, n=29) of data items. The details regarding the first ten items are
displayed in table 2. During implementation, all the values given in the table have been
normalized. The multiple neighborhood approach suggested in this paper uses a
collection of neighborhoods in hybridization with the simulated annealing algorithm
and a hyper-heuristic learning mechanism. Based on an initial solution and a set of
neighborhoods, this algorithm changes the neighborhood inclination during the
search, and the procedure of simulated annealing is used to govern whether a given
neighborhood move is acknowledged or vetoed. The neighborhood approach
basically uses a set of heuristics. Each neighborhood is associated with weight wi that
represents its preference in comparison with other neighborhoods. At each iteration, a
neighborhood is ranked by the probability.

pi= wi/∑ 𝑤𝑤!$
!'((15)

Initially, the weights are set to w= wmin, all the neighborhoods are assigned equal
weights (1/n). However, the weights are updated at the end of each Learning Period.
Learning Period refers to the period that the algorithm takes to understand the problem
space to obtain a better selection of neighborhood moves, which can then be
accepted or rejected by the simulated annealing acceptance criteria. During this time,
the algorithm iterates to analyze the different neighborhood moves and reassigns their
weights depending upon each move's performance. Each neighborhood structure is
associated with a set of counters depending on the number of generated solutions and
passed the simulated annealing acceptance criteria, the new solutions generated
using a neighborhood, and the total solutions generated by heuristic moves. The
performance of each neighborhood can be determined by observing associated
counters. At each iteration, a neighborhood is stochastically ranked with a probability,
as mentioned in equation (15).

Temperature plays an important role in the annealing and reheating process used
in this algorithm. The starting and the stopping temperatures are initially estimated as
ts and te, respectively. During the annealing process, the temperature is gradually
reduced. This happens when the acceptance ratio is improving with respect to
temperature, i.e., better solutions are generated. When the algorithm fails to generate
better solutions, the reheating phase is triggered to explore other neighboring solutions
in an expanded problem space. The acceptance ratio is defined as the ratio of the
number of accepted solutions (Ca) to the length of a single learning period (LP). The
learning period plays a pivotal role in deciding whether the algorithm performs
annealing or reheating functions. The acceptance ratio for a given Learning Period is
compared with the stopping non-improving acceptance ratio (re), which decides
whether reheating is required. If the annealing phase continues, the temperature
reduction takes place in accordance to the function.

t= t/ (1 + η t) (16)
where, η = (ts- te) . nrep / (K. ts. te) (17)

nrep represents the number of iterations at each temperature and K is the number of
total iterations.

Within a learning period, if the acceptance ratio drops below a minimum threshold
(re), then the algorithm switches to the reheating phase, and it continues until it finds a
new, better solution. During the reheating phase, the temperature is incremented using
the temperature deduction rate η. The equation used for updating the temperature is
current temperature

t= t/(1- η.t) (18)
Also, at the end of each learning period, for the reheating phase, the weights of the

neighborhoods are updated based on the number of total solutions and new solutions
that are generated,

wi = cnewi / ctotali + wi (19)
However, if the algorithm encounters acceptable solutions without the need for

reheating, the annealing phase continues. The weights are updated after each
Learning Period for the annealing phase based on the total solutions and the number
of accepted solutions, i.e.

wi = caccepti / ctotali + wi. (20)
A candidate solution S' is generated randomly from the current solution S in

neighborhood Ni. The two solutions are compared based on the objective function.
The new solution generated is accepted or rejected based on the Simulated Annealing
property. However, suppose the new solution is not better than the one already
existing, in that case, the counter for the newly generated solution is incremented, and

it is accepted with a probability of 𝑒𝑒(*
!
") (Aarts et al.,2005) where δ is the difference

between the current solution and the newly generated solution and t is the current
temperature of the loop.

The authors have proposed the following neighborhood moves to reach an optimal
solution: (i) Exchange_facing – This move includes all the conceivable solutions
produced by exchanging one shelf length facing an item with another item are sharing
the same shelf. (ii) Alter_shelf – This move includes all the conceivable solutions that
may be produced by moving all the facings of a selected item from one shelf to another.
(iii) Switch – This move includes the concept of both the neighborhood mentioned
above. The move includes all the potential solutions produced by swapping the total
number of facings of one item i, which is placed on a shelf with another item k placed
on a different shelf. (iv) Remove_facing - This move includes all the conceivable
solutions produced by deleting one shelf length facing an item placed on a shelf. (v)
Increment_facing - This move includes all the conceivable solutions that may be
produced by adding one shelf length of an item placed on a shelf. (vi) Duplet_swap -
This move includes all the conceivable solutions that may be produced by moving two
different items (i, k) placed on two different shelves (m0,m1) with a high positive value
of cross elasticity factor to another shelf (m2) wherein they are to be placed together
in turn, replacing the total facings of two other items (x, y) already placed on that shelf
(m2). The items (x ,y) which are being replaced should have poor affinity between
them.

4. Results and Analysis
The proposed algorithm was executed for several iterations, and the results were

summarized in Figure 2. It has been observed that the profit increases almost linearly

261

In constraint (7), signifies the length of item i, 𝑥𝑥!" is the length facing allotted to an
item i, n is the total number of items that are considered, j refers to the current shelf, Lj
is the shelf length. In constraint (8), yij denotes an item's height facings, which should
be less than the calculated height coefficient for a given shelf. Constraints (7) and (8)
ensure that the items assigned to each shelf do not exceed the shelf's capacity, both
in terms of length and height. Constraint (9) determines the minimum and the maximum
number of facings that can be designated for each item. 𝑠𝑠! denotes the total facing
allotted to item i, which should be within a given minimum (𝑠𝑠!#!$) and maximum (𝑠𝑠!#%&)
boundary value. Constraints (10), (11), (12), (14) define the relationships of the
variables xij and yij. Constraint (13) is a cluster constraint that ensures that the same
type of items have to be displayed together on the shelf, where m denotes the total
number of shelves that the problem considers. Usually, retailers wish to preserve the
related items together in order to exhibit a large attractive block.

The allocation process is optimized using the hyper-heuristic learning mechanism
and simulated annealing to get the optimized placement of products, and finally, the
shelf space layout maximizes the retailer's profit. This paper considers one medium
instance (m=5, n=29) of data items. The details regarding the first ten items are
displayed in table 2. During implementation, all the values given in the table have been
normalized. The multiple neighborhood approach suggested in this paper uses a
collection of neighborhoods in hybridization with the simulated annealing algorithm
and a hyper-heuristic learning mechanism. Based on an initial solution and a set of
neighborhoods, this algorithm changes the neighborhood inclination during the
search, and the procedure of simulated annealing is used to govern whether a given
neighborhood move is acknowledged or vetoed. The neighborhood approach
basically uses a set of heuristics. Each neighborhood is associated with weight wi that
represents its preference in comparison with other neighborhoods. At each iteration, a
neighborhood is ranked by the probability.

pi= wi/∑ 𝑤𝑤!$
!'((15)

Initially, the weights are set to w= wmin, all the neighborhoods are assigned equal
weights (1/n). However, the weights are updated at the end of each Learning Period.
Learning Period refers to the period that the algorithm takes to understand the problem
space to obtain a better selection of neighborhood moves, which can then be
accepted or rejected by the simulated annealing acceptance criteria. During this time,
the algorithm iterates to analyze the different neighborhood moves and reassigns their
weights depending upon each move's performance. Each neighborhood structure is
associated with a set of counters depending on the number of generated solutions and
passed the simulated annealing acceptance criteria, the new solutions generated
using a neighborhood, and the total solutions generated by heuristic moves. The
performance of each neighborhood can be determined by observing associated
counters. At each iteration, a neighborhood is stochastically ranked with a probability,
as mentioned in equation (15).

Temperature plays an important role in the annealing and reheating process used
in this algorithm. The starting and the stopping temperatures are initially estimated as
ts and te, respectively. During the annealing process, the temperature is gradually
reduced. This happens when the acceptance ratio is improving with respect to
temperature, i.e., better solutions are generated. When the algorithm fails to generate
better solutions, the reheating phase is triggered to explore other neighboring solutions
in an expanded problem space. The acceptance ratio is defined as the ratio of the
number of accepted solutions (Ca) to the length of a single learning period (LP). The
learning period plays a pivotal role in deciding whether the algorithm performs
annealing or reheating functions. The acceptance ratio for a given Learning Period is
compared with the stopping non-improving acceptance ratio (re), which decides
whether reheating is required. If the annealing phase continues, the temperature
reduction takes place in accordance to the function.

t= t/ (1 + η t) (16)
where, η = (ts- te) . nrep / (K. ts. te) (17)

nrep represents the number of iterations at each temperature and K is the number of
total iterations.

Within a learning period, if the acceptance ratio drops below a minimum threshold
(re), then the algorithm switches to the reheating phase, and it continues until it finds a
new, better solution. During the reheating phase, the temperature is incremented using
the temperature deduction rate η. The equation used for updating the temperature is
current temperature

t= t/(1- η.t) (18)
Also, at the end of each learning period, for the reheating phase, the weights of the

neighborhoods are updated based on the number of total solutions and new solutions
that are generated,

wi = cnewi / ctotali + wi (19)
However, if the algorithm encounters acceptable solutions without the need for

reheating, the annealing phase continues. The weights are updated after each
Learning Period for the annealing phase based on the total solutions and the number
of accepted solutions, i.e.

wi = caccepti / ctotali + wi. (20)
A candidate solution S' is generated randomly from the current solution S in

neighborhood Ni. The two solutions are compared based on the objective function.
The new solution generated is accepted or rejected based on the Simulated Annealing
property. However, suppose the new solution is not better than the one already
existing, in that case, the counter for the newly generated solution is incremented, and

it is accepted with a probability of 𝑒𝑒(*
!
") (Aarts et al.,2005) where δ is the difference

between the current solution and the newly generated solution and t is the current
temperature of the loop.

The authors have proposed the following neighborhood moves to reach an optimal
solution: (i) Exchange_facing – This move includes all the conceivable solutions
produced by exchanging one shelf length facing an item with another item are sharing
the same shelf. (ii) Alter_shelf – This move includes all the conceivable solutions that
may be produced by moving all the facings of a selected item from one shelf to another.
(iii) Switch – This move includes the concept of both the neighborhood mentioned
above. The move includes all the potential solutions produced by swapping the total
number of facings of one item i, which is placed on a shelf with another item k placed
on a different shelf. (iv) Remove_facing - This move includes all the conceivable
solutions produced by deleting one shelf length facing an item placed on a shelf. (v)
Increment_facing - This move includes all the conceivable solutions that may be
produced by adding one shelf length of an item placed on a shelf. (vi) Duplet_swap -
This move includes all the conceivable solutions that may be produced by moving two
different items (i, k) placed on two different shelves (m0,m1) with a high positive value
of cross elasticity factor to another shelf (m2) wherein they are to be placed together
in turn, replacing the total facings of two other items (x, y) already placed on that shelf
(m2). The items (x ,y) which are being replaced should have poor affinity between
them.

4. Results and Analysis
The proposed algorithm was executed for several iterations, and the results were

summarized in Figure 2. It has been observed that the profit increases almost linearly

Table 2: Item specifications of 10 sample items.

Ite
m

H
ei

gh
t

Le
ng

th

Pr
ic

e

M
in

 F
ac

in
g

M
ax

 F
ac

in
g

sc
al

e
fa

ct
or

sp
ac

e
el

as
-

tic
ity

Cross Elasticity

1 2 3 4 5 6 7 8 9 10

Azerbaijan Journal of High Performance Computing, 3 (2), 2020

262

1 14
3

47

30
1.

12

7 12

65
8.

52

0.
98

-9
99

9
0.

02
3

0.
00

3
0.

01
3

0.
01

1

-0
.0

3
0.

02
9

0.
01

8

0.
02

1

-0
.0

27

2 14
3

47

20
0.

92
2 8

18
.1

8

1.
02 0

-9
99

9
0.

00
1

-0
.0

14

0.
02

9

0.
01

1
-0

.0
07

-0
.0

04

0.
01

0.
01

3 14
3

47

36
2.

57

8 16

68
5.

4

0.
35

-0
.0

02
-0

.0
16

-9
99

9
-0

.0
09

0.
00

1

-0
.0

2
-0

.0
1

0.
01

1

-0
.0

07

-0
.0

21

4 14
3

47

50
0.

04

3 10 45
.8

0.
88

0.
02

6
-0

.0
25

0.
02

8
-9

99
9

-0
.0

01

0.
00

8
-0

.0
28

-0
.0

23

-0
.0

18

-0
.0

25

5 14
3

47

44
8.

68

2 8

93
.5

7

0.
73

-0
.0

12
0.

00
2

-0
.0

12
0.

02
9

-9
99

9

0.
02

2
0.

01
7

-0
.0

17

-0
.0

24

-0
.0

2

6 15
0

50

34
6.

71

3 8

42
.5

9

0.
88

-0
.0

05
0.

02
7

-0
.0

06
0.

01
6

0.
02

6

-9
99

9
-0

.0
23

-0
.0

01

-0
.0

11

-0
.0

27

7 14
3

47

31
1.

20

3 10

12
5.

21

1.
06

-0
.0

02
-0

.0
09

-0
.0

07
-0

.0
08

-0
.0

3

0.
00

7
-9

99
9

0.
02

0.
02

1

0.
01

6
8 18

0

65

57
8.

60

4 6

13
4.

29

1.
11

-0
.0

25
-0

.0
29

0.
02

3
-0

.0
17

0.
02

2

-0
.0

02
-0

.0
12

-9
99

9

-0
.0

23

-0
.0

23

9 18
0

65

19
6.

39

7 10

70
.8

1

1.
12

-0
.0

08
-0

.0
02

-0
.0

08
0.

00
3

-0
.0

12

-0
.0

26
-0

.2

-0
.0

15

-9
99

9

-0
.0

04

10 15
3

56

44
1.

88

3 8

67
1.

83

0.
15

0.
01

5
-0

.0
2

-0
.0

22
0.

02
1

0.
02

9

-0
.0

11
0.

02
9

0.
00

9

0.
02

1

-9
99

9

In constraint (7), signifies the length of item i, 𝑥𝑥!" is the length facing allotted to an
item i, n is the total number of items that are considered, j refers to the current shelf, Lj
is the shelf length. In constraint (8), yij denotes an item's height facings, which should
be less than the calculated height coefficient for a given shelf. Constraints (7) and (8)
ensure that the items assigned to each shelf do not exceed the shelf's capacity, both
in terms of length and height. Constraint (9) determines the minimum and the maximum
number of facings that can be designated for each item. 𝑠𝑠! denotes the total facing
allotted to item i, which should be within a given minimum (𝑠𝑠!#!$) and maximum (𝑠𝑠!#%&)
boundary value. Constraints (10), (11), (12), (14) define the relationships of the
variables xij and yij. Constraint (13) is a cluster constraint that ensures that the same
type of items have to be displayed together on the shelf, where m denotes the total
number of shelves that the problem considers. Usually, retailers wish to preserve the
related items together in order to exhibit a large attractive block.

The allocation process is optimized using the hyper-heuristic learning mechanism
and simulated annealing to get the optimized placement of products, and finally, the
shelf space layout maximizes the retailer's profit. This paper considers one medium
instance (m=5, n=29) of data items. The details regarding the first ten items are
displayed in table 2. During implementation, all the values given in the table have been
normalized. The multiple neighborhood approach suggested in this paper uses a
collection of neighborhoods in hybridization with the simulated annealing algorithm
and a hyper-heuristic learning mechanism. Based on an initial solution and a set of
neighborhoods, this algorithm changes the neighborhood inclination during the
search, and the procedure of simulated annealing is used to govern whether a given
neighborhood move is acknowledged or vetoed. The neighborhood approach
basically uses a set of heuristics. Each neighborhood is associated with weight wi that
represents its preference in comparison with other neighborhoods. At each iteration, a
neighborhood is ranked by the probability.

pi= wi/∑ 𝑤𝑤!$
!'((15)

Initially, the weights are set to w= wmin, all the neighborhoods are assigned equal
weights (1/n). However, the weights are updated at the end of each Learning Period.
Learning Period refers to the period that the algorithm takes to understand the problem
space to obtain a better selection of neighborhood moves, which can then be
accepted or rejected by the simulated annealing acceptance criteria. During this time,
the algorithm iterates to analyze the different neighborhood moves and reassigns their
weights depending upon each move's performance. Each neighborhood structure is
associated with a set of counters depending on the number of generated solutions and
passed the simulated annealing acceptance criteria, the new solutions generated
using a neighborhood, and the total solutions generated by heuristic moves. The
performance of each neighborhood can be determined by observing associated
counters. At each iteration, a neighborhood is stochastically ranked with a probability,
as mentioned in equation (15).

Temperature plays an important role in the annealing and reheating process used
in this algorithm. The starting and the stopping temperatures are initially estimated as
ts and te, respectively. During the annealing process, the temperature is gradually
reduced. This happens when the acceptance ratio is improving with respect to
temperature, i.e., better solutions are generated. When the algorithm fails to generate
better solutions, the reheating phase is triggered to explore other neighboring solutions
in an expanded problem space. The acceptance ratio is defined as the ratio of the
number of accepted solutions (Ca) to the length of a single learning period (LP). The
learning period plays a pivotal role in deciding whether the algorithm performs
annealing or reheating functions. The acceptance ratio for a given Learning Period is
compared with the stopping non-improving acceptance ratio (re), which decides
whether reheating is required. If the annealing phase continues, the temperature
reduction takes place in accordance to the function.

t= t/ (1 + η t) (16)
where, η = (ts- te) . nrep / (K. ts. te) (17)

nrep represents the number of iterations at each temperature and K is the number of
total iterations.

Within a learning period, if the acceptance ratio drops below a minimum threshold
(re), then the algorithm switches to the reheating phase, and it continues until it finds a
new, better solution. During the reheating phase, the temperature is incremented using
the temperature deduction rate η. The equation used for updating the temperature is
current temperature

t= t/(1- η.t) (18)
Also, at the end of each learning period, for the reheating phase, the weights of the

neighborhoods are updated based on the number of total solutions and new solutions
that are generated,

wi = cnewi / ctotali + wi (19)
However, if the algorithm encounters acceptable solutions without the need for

reheating, the annealing phase continues. The weights are updated after each
Learning Period for the annealing phase based on the total solutions and the number
of accepted solutions, i.e.

wi = caccepti / ctotali + wi. (20)
A candidate solution S' is generated randomly from the current solution S in

neighborhood Ni. The two solutions are compared based on the objective function.
The new solution generated is accepted or rejected based on the Simulated Annealing
property. However, suppose the new solution is not better than the one already
existing, in that case, the counter for the newly generated solution is incremented, and

it is accepted with a probability of 𝑒𝑒(*
!
") (Aarts et al.,2005) where δ is the difference

between the current solution and the newly generated solution and t is the current
temperature of the loop.

The authors have proposed the following neighborhood moves to reach an optimal
solution: (i) Exchange_facing – This move includes all the conceivable solutions
produced by exchanging one shelf length facing an item with another item are sharing
the same shelf. (ii) Alter_shelf – This move includes all the conceivable solutions that
may be produced by moving all the facings of a selected item from one shelf to another.
(iii) Switch – This move includes the concept of both the neighborhood mentioned
above. The move includes all the potential solutions produced by swapping the total
number of facings of one item i, which is placed on a shelf with another item k placed
on a different shelf. (iv) Remove_facing - This move includes all the conceivable
solutions produced by deleting one shelf length facing an item placed on a shelf. (v)
Increment_facing - This move includes all the conceivable solutions that may be
produced by adding one shelf length of an item placed on a shelf. (vi) Duplet_swap -
This move includes all the conceivable solutions that may be produced by moving two
different items (i, k) placed on two different shelves (m0,m1) with a high positive value
of cross elasticity factor to another shelf (m2) wherein they are to be placed together
in turn, replacing the total facings of two other items (x, y) already placed on that shelf
(m2). The items (x ,y) which are being replaced should have poor affinity between
them.

4. Results and Analysis
The proposed algorithm was executed for several iterations, and the results were

summarized in Figure 2. It has been observed that the profit increases almost linearly

Romit S. Beed, et al.

263

In constraint (7), signifies the length of item i, 𝑥𝑥!" is the length facing allotted to an
item i, n is the total number of items that are considered, j refers to the current shelf, Lj
is the shelf length. In constraint (8), yij denotes an item's height facings, which should
be less than the calculated height coefficient for a given shelf. Constraints (7) and (8)
ensure that the items assigned to each shelf do not exceed the shelf's capacity, both
in terms of length and height. Constraint (9) determines the minimum and the maximum
number of facings that can be designated for each item. 𝑠𝑠! denotes the total facing
allotted to item i, which should be within a given minimum (𝑠𝑠!#!$) and maximum (𝑠𝑠!#%&)
boundary value. Constraints (10), (11), (12), (14) define the relationships of the
variables xij and yij. Constraint (13) is a cluster constraint that ensures that the same
type of items have to be displayed together on the shelf, where m denotes the total
number of shelves that the problem considers. Usually, retailers wish to preserve the
related items together in order to exhibit a large attractive block.

The allocation process is optimized using the hyper-heuristic learning mechanism
and simulated annealing to get the optimized placement of products, and finally, the
shelf space layout maximizes the retailer's profit. This paper considers one medium
instance (m=5, n=29) of data items. The details regarding the first ten items are
displayed in table 2. During implementation, all the values given in the table have been
normalized. The multiple neighborhood approach suggested in this paper uses a
collection of neighborhoods in hybridization with the simulated annealing algorithm
and a hyper-heuristic learning mechanism. Based on an initial solution and a set of
neighborhoods, this algorithm changes the neighborhood inclination during the
search, and the procedure of simulated annealing is used to govern whether a given
neighborhood move is acknowledged or vetoed. The neighborhood approach
basically uses a set of heuristics. Each neighborhood is associated with weight wi that
represents its preference in comparison with other neighborhoods. At each iteration, a
neighborhood is ranked by the probability.

pi= wi/∑ 𝑤𝑤!$
!'((15)

Initially, the weights are set to w= wmin, all the neighborhoods are assigned equal
weights (1/n). However, the weights are updated at the end of each Learning Period.
Learning Period refers to the period that the algorithm takes to understand the problem
space to obtain a better selection of neighborhood moves, which can then be
accepted or rejected by the simulated annealing acceptance criteria. During this time,
the algorithm iterates to analyze the different neighborhood moves and reassigns their
weights depending upon each move's performance. Each neighborhood structure is
associated with a set of counters depending on the number of generated solutions and
passed the simulated annealing acceptance criteria, the new solutions generated
using a neighborhood, and the total solutions generated by heuristic moves. The
performance of each neighborhood can be determined by observing associated
counters. At each iteration, a neighborhood is stochastically ranked with a probability,
as mentioned in equation (15).

Temperature plays an important role in the annealing and reheating process used
in this algorithm. The starting and the stopping temperatures are initially estimated as
ts and te, respectively. During the annealing process, the temperature is gradually
reduced. This happens when the acceptance ratio is improving with respect to
temperature, i.e., better solutions are generated. When the algorithm fails to generate
better solutions, the reheating phase is triggered to explore other neighboring solutions
in an expanded problem space. The acceptance ratio is defined as the ratio of the
number of accepted solutions (Ca) to the length of a single learning period (LP). The
learning period plays a pivotal role in deciding whether the algorithm performs
annealing or reheating functions. The acceptance ratio for a given Learning Period is
compared with the stopping non-improving acceptance ratio (re), which decides
whether reheating is required. If the annealing phase continues, the temperature
reduction takes place in accordance to the function.

t= t/ (1 + η t) (16)
where, η = (ts- te) . nrep / (K. ts. te) (17)

nrep represents the number of iterations at each temperature and K is the number of
total iterations.

Within a learning period, if the acceptance ratio drops below a minimum threshold
(re), then the algorithm switches to the reheating phase, and it continues until it finds a
new, better solution. During the reheating phase, the temperature is incremented using
the temperature deduction rate η. The equation used for updating the temperature is
current temperature

t= t/(1- η.t) (18)
Also, at the end of each learning period, for the reheating phase, the weights of the

neighborhoods are updated based on the number of total solutions and new solutions
that are generated,

wi = cnewi / ctotali + wi (19)
However, if the algorithm encounters acceptable solutions without the need for

reheating, the annealing phase continues. The weights are updated after each
Learning Period for the annealing phase based on the total solutions and the number
of accepted solutions, i.e.

wi = caccepti / ctotali + wi. (20)
A candidate solution S' is generated randomly from the current solution S in

neighborhood Ni. The two solutions are compared based on the objective function.
The new solution generated is accepted or rejected based on the Simulated Annealing
property. However, suppose the new solution is not better than the one already
existing, in that case, the counter for the newly generated solution is incremented, and

it is accepted with a probability of 𝑒𝑒(*
!
") (Aarts et al.,2005) where δ is the difference

between the current solution and the newly generated solution and t is the current
temperature of the loop.

The authors have proposed the following neighborhood moves to reach an optimal
solution: (i) Exchange_facing – This move includes all the conceivable solutions
produced by exchanging one shelf length facing an item with another item are sharing
the same shelf. (ii) Alter_shelf – This move includes all the conceivable solutions that
may be produced by moving all the facings of a selected item from one shelf to another.
(iii) Switch – This move includes the concept of both the neighborhood mentioned
above. The move includes all the potential solutions produced by swapping the total
number of facings of one item i, which is placed on a shelf with another item k placed
on a different shelf. (iv) Remove_facing - This move includes all the conceivable
solutions produced by deleting one shelf length facing an item placed on a shelf. (v)
Increment_facing - This move includes all the conceivable solutions that may be
produced by adding one shelf length of an item placed on a shelf. (vi) Duplet_swap -
This move includes all the conceivable solutions that may be produced by moving two
different items (i, k) placed on two different shelves (m0,m1) with a high positive value
of cross elasticity factor to another shelf (m2) wherein they are to be placed together
in turn, replacing the total facings of two other items (x, y) already placed on that shelf
(m2). The items (x ,y) which are being replaced should have poor affinity between
them.

4. Results and Analysis
The proposed algorithm was executed for several iterations, and the results were

summarized in Figure 2. It has been observed that the profit increases almost linearly

Azerbaijan Journal of High Performance Computing, 3 (2), 2020

264

Romit S. Beed, et al.

Fig. 1. Flowchart for the proposed multi-neighbourhood approach

In constraint (7), signifies the length of item i, 𝑥𝑥!" is the length facing allotted to an
item i, n is the total number of items that are considered, j refers to the current shelf, Lj
is the shelf length. In constraint (8), yij denotes an item's height facings, which should
be less than the calculated height coefficient for a given shelf. Constraints (7) and (8)
ensure that the items assigned to each shelf do not exceed the shelf's capacity, both
in terms of length and height. Constraint (9) determines the minimum and the maximum
number of facings that can be designated for each item. 𝑠𝑠! denotes the total facing
allotted to item i, which should be within a given minimum (𝑠𝑠!#!$) and maximum (𝑠𝑠!#%&)
boundary value. Constraints (10), (11), (12), (14) define the relationships of the
variables xij and yij. Constraint (13) is a cluster constraint that ensures that the same
type of items have to be displayed together on the shelf, where m denotes the total
number of shelves that the problem considers. Usually, retailers wish to preserve the
related items together in order to exhibit a large attractive block.

The allocation process is optimized using the hyper-heuristic learning mechanism
and simulated annealing to get the optimized placement of products, and finally, the
shelf space layout maximizes the retailer's profit. This paper considers one medium
instance (m=5, n=29) of data items. The details regarding the first ten items are
displayed in table 2. During implementation, all the values given in the table have been
normalized. The multiple neighborhood approach suggested in this paper uses a
collection of neighborhoods in hybridization with the simulated annealing algorithm
and a hyper-heuristic learning mechanism. Based on an initial solution and a set of
neighborhoods, this algorithm changes the neighborhood inclination during the
search, and the procedure of simulated annealing is used to govern whether a given
neighborhood move is acknowledged or vetoed. The neighborhood approach
basically uses a set of heuristics. Each neighborhood is associated with weight wi that
represents its preference in comparison with other neighborhoods. At each iteration, a
neighborhood is ranked by the probability.

pi= wi/∑ 𝑤𝑤!$
!'((15)

Initially, the weights are set to w= wmin, all the neighborhoods are assigned equal
weights (1/n). However, the weights are updated at the end of each Learning Period.
Learning Period refers to the period that the algorithm takes to understand the problem
space to obtain a better selection of neighborhood moves, which can then be
accepted or rejected by the simulated annealing acceptance criteria. During this time,
the algorithm iterates to analyze the different neighborhood moves and reassigns their
weights depending upon each move's performance. Each neighborhood structure is
associated with a set of counters depending on the number of generated solutions and
passed the simulated annealing acceptance criteria, the new solutions generated
using a neighborhood, and the total solutions generated by heuristic moves. The
performance of each neighborhood can be determined by observing associated
counters. At each iteration, a neighborhood is stochastically ranked with a probability,
as mentioned in equation (15).

Temperature plays an important role in the annealing and reheating process used
in this algorithm. The starting and the stopping temperatures are initially estimated as
ts and te, respectively. During the annealing process, the temperature is gradually
reduced. This happens when the acceptance ratio is improving with respect to
temperature, i.e., better solutions are generated. When the algorithm fails to generate
better solutions, the reheating phase is triggered to explore other neighboring solutions
in an expanded problem space. The acceptance ratio is defined as the ratio of the
number of accepted solutions (Ca) to the length of a single learning period (LP). The
learning period plays a pivotal role in deciding whether the algorithm performs
annealing or reheating functions. The acceptance ratio for a given Learning Period is
compared with the stopping non-improving acceptance ratio (re), which decides
whether reheating is required. If the annealing phase continues, the temperature
reduction takes place in accordance to the function.

t= t/ (1 + η t) (16)
where, η = (ts- te) . nrep / (K. ts. te) (17)

nrep represents the number of iterations at each temperature and K is the number of
total iterations.

Within a learning period, if the acceptance ratio drops below a minimum threshold
(re), then the algorithm switches to the reheating phase, and it continues until it finds a
new, better solution. During the reheating phase, the temperature is incremented using
the temperature deduction rate η. The equation used for updating the temperature is
current temperature

t= t/(1- η.t) (18)
Also, at the end of each learning period, for the reheating phase, the weights of the

neighborhoods are updated based on the number of total solutions and new solutions
that are generated,

wi = cnewi / ctotali + wi (19)
However, if the algorithm encounters acceptable solutions without the need for

reheating, the annealing phase continues. The weights are updated after each
Learning Period for the annealing phase based on the total solutions and the number
of accepted solutions, i.e.

wi = caccepti / ctotali + wi. (20)
A candidate solution S' is generated randomly from the current solution S in

neighborhood Ni. The two solutions are compared based on the objective function.
The new solution generated is accepted or rejected based on the Simulated Annealing
property. However, suppose the new solution is not better than the one already
existing, in that case, the counter for the newly generated solution is incremented, and

it is accepted with a probability of 𝑒𝑒(*
!
") (Aarts et al.,2005) where δ is the difference

between the current solution and the newly generated solution and t is the current
temperature of the loop.

The authors have proposed the following neighborhood moves to reach an optimal
solution: (i) Exchange_facing – This move includes all the conceivable solutions
produced by exchanging one shelf length facing an item with another item are sharing
the same shelf. (ii) Alter_shelf – This move includes all the conceivable solutions that
may be produced by moving all the facings of a selected item from one shelf to another.
(iii) Switch – This move includes the concept of both the neighborhood mentioned
above. The move includes all the potential solutions produced by swapping the total
number of facings of one item i, which is placed on a shelf with another item k placed
on a different shelf. (iv) Remove_facing - This move includes all the conceivable
solutions produced by deleting one shelf length facing an item placed on a shelf. (v)
Increment_facing - This move includes all the conceivable solutions that may be
produced by adding one shelf length of an item placed on a shelf. (vi) Duplet_swap -
This move includes all the conceivable solutions that may be produced by moving two
different items (i, k) placed on two different shelves (m0,m1) with a high positive value
of cross elasticity factor to another shelf (m2) wherein they are to be placed together
in turn, replacing the total facings of two other items (x, y) already placed on that shelf
(m2). The items (x ,y) which are being replaced should have poor affinity between
them.

4. Results and Analysis
The proposed algorithm was executed for several iterations, and the results were

summarized in Figure 2. It has been observed that the profit increases almost linearly

265

In constraint (7), signifies the length of item i, 𝑥𝑥!" is the length facing allotted to an
item i, n is the total number of items that are considered, j refers to the current shelf, Lj
is the shelf length. In constraint (8), yij denotes an item's height facings, which should
be less than the calculated height coefficient for a given shelf. Constraints (7) and (8)
ensure that the items assigned to each shelf do not exceed the shelf's capacity, both
in terms of length and height. Constraint (9) determines the minimum and the maximum
number of facings that can be designated for each item. 𝑠𝑠! denotes the total facing
allotted to item i, which should be within a given minimum (𝑠𝑠!#!$) and maximum (𝑠𝑠!#%&)
boundary value. Constraints (10), (11), (12), (14) define the relationships of the
variables xij and yij. Constraint (13) is a cluster constraint that ensures that the same
type of items have to be displayed together on the shelf, where m denotes the total
number of shelves that the problem considers. Usually, retailers wish to preserve the
related items together in order to exhibit a large attractive block.

The allocation process is optimized using the hyper-heuristic learning mechanism
and simulated annealing to get the optimized placement of products, and finally, the
shelf space layout maximizes the retailer's profit. This paper considers one medium
instance (m=5, n=29) of data items. The details regarding the first ten items are
displayed in table 2. During implementation, all the values given in the table have been
normalized. The multiple neighborhood approach suggested in this paper uses a
collection of neighborhoods in hybridization with the simulated annealing algorithm
and a hyper-heuristic learning mechanism. Based on an initial solution and a set of
neighborhoods, this algorithm changes the neighborhood inclination during the
search, and the procedure of simulated annealing is used to govern whether a given
neighborhood move is acknowledged or vetoed. The neighborhood approach
basically uses a set of heuristics. Each neighborhood is associated with weight wi that
represents its preference in comparison with other neighborhoods. At each iteration, a
neighborhood is ranked by the probability.

pi= wi/∑ 𝑤𝑤!$
!'((15)

Initially, the weights are set to w= wmin, all the neighborhoods are assigned equal
weights (1/n). However, the weights are updated at the end of each Learning Period.
Learning Period refers to the period that the algorithm takes to understand the problem
space to obtain a better selection of neighborhood moves, which can then be
accepted or rejected by the simulated annealing acceptance criteria. During this time,
the algorithm iterates to analyze the different neighborhood moves and reassigns their
weights depending upon each move's performance. Each neighborhood structure is
associated with a set of counters depending on the number of generated solutions and
passed the simulated annealing acceptance criteria, the new solutions generated
using a neighborhood, and the total solutions generated by heuristic moves. The
performance of each neighborhood can be determined by observing associated
counters. At each iteration, a neighborhood is stochastically ranked with a probability,
as mentioned in equation (15).

Temperature plays an important role in the annealing and reheating process used
in this algorithm. The starting and the stopping temperatures are initially estimated as
ts and te, respectively. During the annealing process, the temperature is gradually
reduced. This happens when the acceptance ratio is improving with respect to
temperature, i.e., better solutions are generated. When the algorithm fails to generate
better solutions, the reheating phase is triggered to explore other neighboring solutions
in an expanded problem space. The acceptance ratio is defined as the ratio of the
number of accepted solutions (Ca) to the length of a single learning period (LP). The
learning period plays a pivotal role in deciding whether the algorithm performs
annealing or reheating functions. The acceptance ratio for a given Learning Period is
compared with the stopping non-improving acceptance ratio (re), which decides
whether reheating is required. If the annealing phase continues, the temperature
reduction takes place in accordance to the function.

t= t/ (1 + η t) (16)
where, η = (ts- te) . nrep / (K. ts. te) (17)

nrep represents the number of iterations at each temperature and K is the number of
total iterations.

Within a learning period, if the acceptance ratio drops below a minimum threshold
(re), then the algorithm switches to the reheating phase, and it continues until it finds a
new, better solution. During the reheating phase, the temperature is incremented using
the temperature deduction rate η. The equation used for updating the temperature is
current temperature

t= t/(1- η.t) (18)
Also, at the end of each learning period, for the reheating phase, the weights of the

neighborhoods are updated based on the number of total solutions and new solutions
that are generated,

wi = cnewi / ctotali + wi (19)
However, if the algorithm encounters acceptable solutions without the need for

reheating, the annealing phase continues. The weights are updated after each
Learning Period for the annealing phase based on the total solutions and the number
of accepted solutions, i.e.

wi = caccepti / ctotali + wi. (20)
A candidate solution S' is generated randomly from the current solution S in

neighborhood Ni. The two solutions are compared based on the objective function.
The new solution generated is accepted or rejected based on the Simulated Annealing
property. However, suppose the new solution is not better than the one already
existing, in that case, the counter for the newly generated solution is incremented, and

it is accepted with a probability of 𝑒𝑒(*
!
") (Aarts et al.,2005) where δ is the difference

between the current solution and the newly generated solution and t is the current
temperature of the loop.

The authors have proposed the following neighborhood moves to reach an optimal
solution: (i) Exchange_facing – This move includes all the conceivable solutions
produced by exchanging one shelf length facing an item with another item are sharing
the same shelf. (ii) Alter_shelf – This move includes all the conceivable solutions that
may be produced by moving all the facings of a selected item from one shelf to another.
(iii) Switch – This move includes the concept of both the neighborhood mentioned
above. The move includes all the potential solutions produced by swapping the total
number of facings of one item i, which is placed on a shelf with another item k placed
on a different shelf. (iv) Remove_facing - This move includes all the conceivable
solutions produced by deleting one shelf length facing an item placed on a shelf. (v)
Increment_facing - This move includes all the conceivable solutions that may be
produced by adding one shelf length of an item placed on a shelf. (vi) Duplet_swap -
This move includes all the conceivable solutions that may be produced by moving two
different items (i, k) placed on two different shelves (m0,m1) with a high positive value
of cross elasticity factor to another shelf (m2) wherein they are to be placed together
in turn, replacing the total facings of two other items (x, y) already placed on that shelf
(m2). The items (x ,y) which are being replaced should have poor affinity between
them.

4. Results and Analysis
The proposed algorithm was executed for several iterations, and the results were

summarized in Figure 2. It has been observed that the profit increases almost linearly

with an increase in the total number of iterations. However, it is also not feasible for
the process to iterate indefinitely as it takes more time to execute. The total number of
iterations highly influences the improvement in profit. After a certain number of
iterations, the profit stabilizes.

From figure 2, it can be inferred that when the number of iterations is very small
(K=4500 to 20,000), the improvement in profit is minimal. However, the graph in this
section linearly increases with increased iteration values. Between 80,000 to 2,50,000
the graph shows variability in profit improvement. The maximum profit is obtained
between iterations 3,00,000 to 4,00,000, after which the graph stabilizes at a slightly
lower profit value.

The algorithm analyses the problem space, trying to find better solutions controlled
by the number of iterations. In this paper, to estimate the most desirable learning
period, a range of different learning periods between 500 and 3,00,000 have been
considered. Within a learning period, the algorithm explores the different suggested
neighborhoods using either annealing or reheating process. Based on the
performance of each neighborhood, the weights associated with each heuristic move
are updated at the end of each learning period, and again, the learning period works
with those neighborhoods that are, in turn, selected based on their updated weights
(using a probability function). Thus, the learning period for a given iteration must not
be so small that there is no ample time for the process to learn about the problem. Also,
it should not, on the other hand, be so large as to prohibit the opportunities for the
algorithm to utilize the information gathered during the learning period.

Shows the graph for the learning period 20000, which has been used in the
implementation. For instance, observing the case of a minimum learning period, LP
=5000, as shown in figure 4, the number of variations in the graph for the same number
of total iterations is much less than that LP=20000. This proves that if the learning
period is too small, the algorithm fails to gather sufficient knowledge about the heuristic
moves whose performance is pivotal to determining the improvement in profit, which
again serves the whole work's primary objective.

Again, analyzing the algorithm by keeping the learning period as large as 1,50,000
shows that the graph in figure 5 is almost stable, with no considerable change. This
proves that although the algorithm gets a substantial amount of time to learn the search
space, the given iteration of 6,00,000, falls short of applying the knowledge gathered.
In other words, the neighborhoods' weights cannot get adequately updated at the end
of a learning period and then implemented in the next as most of the iterations are lost
while executing a single learning period. Analysis has been done by executing the
algorithm several times, and every time, it has shown similar results. The gradient
coloring schemes in the graphs in figure 3, 4, 5 shows the different executions wherein
the darkest shade stands for the first execution.

At each temperature, the algorithm iterates five times (nrep=5). On increasing the
temperature by reheating, it is intuitive that the program's execution time will increase.
Moreover, as the value of re affects the reheating and annealing process within the
algorithm, it indirectly affects the fitness value(profit). From the graphs in Figures 6 and
7, it is observed that with increasing non improving acceptance ratio values(re), the
average number of times annealing takes place steadily decreases after re =0.23, and
simultaneously the reheating process starts increasing from the same point. For re
value greater than 0.28, both the graphs show unpredictability. So, it may be
concluded from the two graphs that the value of re within range 0.23-0.28 results in
optimized solutions.

It can be inferred from Figure 8 that for the chosen range of re values (0.23 – 0.28),
the profit obtained is quite stable and obtained as a result of both annealing and
reheating. An abrupt increase in profit can be observed on increasing the re value,
which is marked by an abrupt increase in the reheating process. However, such abrupt
increase is unrealistic and may be considered as outliers in comparison with other
values. Similarly, for smaller values of re, the outcome is unpredictable and does not
provide stable or reliable solutions for every execution. The graph in Figure 9 shows
that the execution time does not increase much for the aforesaid chosen range of re
values (0.23-0.28). For re values more than 0.28, the reheating process increases
abruptly, leading to abrupt increase in the execution time, which is unwanted. Also, for
smaller re values, it is observed that the execution time is relatively high even though
no reheating takes place. This may be accounted for because the program tries to find
a better solution within the same search space as it is unable to satisfy the reheating
condition and increase the search domain.

The algorithm has been executed multiple times, changing the various parameters
and summarized in Table 3. It can be observed that the algorithm obtains the most
optimal solution for K=6,00,000, LP=20,000, and re=0.25. The profit, in this case, has
maximum improvement while the execution time is also rational. Both annealing and
reheating processes take place, enabling the algorithm to yield better results by
thoroughly exploring the problem's search space.

5. Conclusion
A shelf space allocation problem usually involves a large number of parameters.

Obtaining a reliable estimation of such parameters is generally challenging and time-
consuming; therefore, it is challenging to obtain fruitful solutions in real life. This paper's
proposed model is distinguishable by hyper-heuristics and the ability to solve more
extensive, more realistic sized instances. This model considers the second dimension
as height or stack coefficient instead of only considering the length facings of the items
and the third dimension, which is the shelves' height in a rack. Thus, this model can be
used to design layouts for the store to enable the retailer to maximize his profit.
Moreover, it applies a hyper-heuristics method to calculate the solution using the
process of simulated annealing. The algorithm used in this work is confined to shelf
space allocation problems and can be used to optimize any other allocation problem.
The paper tried to solve the problem of allocating shelf space by proposing a novel
approach.

This paper solves the optimization problem by converting a multi-objective
optimization into a single objective using the popular weighted sum technique. The
proposed model increases the retailer's profit subject to various objectives and
constraints. Analysis has been carried out thoroughly to determine the appropriate
values of the different parameters that are quintessential to determining the retailer's
profit with the aim of maximum utilization of shelf space. The weights of individual
parameters result from a systematic survey done using the transaction history of
various retailers. Moreover, the proposed model works on a hyper-heuristic algorithm
that can provide better results than traditional heuristics, which are generally applied
for optimization problems.

This work can be extended to include Pareto optimality to wholly implement multi-
objective optimization considering conflicting objectives such as retailers' investments,
human resources, etc. The model does not consider the effect of replenishment and
backroom on retail shelf space planning. Also, improvements may be made in the
probability selection of the neighborhood moves (hyper-heuristics). The selection of
the neighborhoods can be based on an online learning mechanism as that selection
process might provide a slightly better result for the instances. When implemented in
reality, this model will help in optimizing profit but may help in planning marketing
strategies and designing new store layouts.

Fig. 2. Iteration stabilization graph

Azerbaijan Journal of High Performance Computing, 3 (2), 2020

266

Fig. 3. Graph for learning period 20,000

Fig. 4. Graph for learning period 5,000

Fig. 5. Graph for learning period 1,50,000

with an increase in the total number of iterations. However, it is also not feasible for
the process to iterate indefinitely as it takes more time to execute. The total number of
iterations highly influences the improvement in profit. After a certain number of
iterations, the profit stabilizes.

From figure 2, it can be inferred that when the number of iterations is very small
(K=4500 to 20,000), the improvement in profit is minimal. However, the graph in this
section linearly increases with increased iteration values. Between 80,000 to 2,50,000
the graph shows variability in profit improvement. The maximum profit is obtained
between iterations 3,00,000 to 4,00,000, after which the graph stabilizes at a slightly
lower profit value.

The algorithm analyses the problem space, trying to find better solutions controlled
by the number of iterations. In this paper, to estimate the most desirable learning
period, a range of different learning periods between 500 and 3,00,000 have been
considered. Within a learning period, the algorithm explores the different suggested
neighborhoods using either annealing or reheating process. Based on the
performance of each neighborhood, the weights associated with each heuristic move
are updated at the end of each learning period, and again, the learning period works
with those neighborhoods that are, in turn, selected based on their updated weights
(using a probability function). Thus, the learning period for a given iteration must not
be so small that there is no ample time for the process to learn about the problem. Also,
it should not, on the other hand, be so large as to prohibit the opportunities for the
algorithm to utilize the information gathered during the learning period.

Shows the graph for the learning period 20000, which has been used in the
implementation. For instance, observing the case of a minimum learning period, LP
=5000, as shown in figure 4, the number of variations in the graph for the same number
of total iterations is much less than that LP=20000. This proves that if the learning
period is too small, the algorithm fails to gather sufficient knowledge about the heuristic
moves whose performance is pivotal to determining the improvement in profit, which
again serves the whole work's primary objective.

Again, analyzing the algorithm by keeping the learning period as large as 1,50,000
shows that the graph in figure 5 is almost stable, with no considerable change. This
proves that although the algorithm gets a substantial amount of time to learn the search
space, the given iteration of 6,00,000, falls short of applying the knowledge gathered.
In other words, the neighborhoods' weights cannot get adequately updated at the end
of a learning period and then implemented in the next as most of the iterations are lost
while executing a single learning period. Analysis has been done by executing the
algorithm several times, and every time, it has shown similar results. The gradient
coloring schemes in the graphs in figure 3, 4, 5 shows the different executions wherein
the darkest shade stands for the first execution.

At each temperature, the algorithm iterates five times (nrep=5). On increasing the
temperature by reheating, it is intuitive that the program's execution time will increase.
Moreover, as the value of re affects the reheating and annealing process within the
algorithm, it indirectly affects the fitness value(profit). From the graphs in Figures 6 and
7, it is observed that with increasing non improving acceptance ratio values(re), the
average number of times annealing takes place steadily decreases after re =0.23, and
simultaneously the reheating process starts increasing from the same point. For re
value greater than 0.28, both the graphs show unpredictability. So, it may be
concluded from the two graphs that the value of re within range 0.23-0.28 results in
optimized solutions.

It can be inferred from Figure 8 that for the chosen range of re values (0.23 – 0.28),
the profit obtained is quite stable and obtained as a result of both annealing and
reheating. An abrupt increase in profit can be observed on increasing the re value,
which is marked by an abrupt increase in the reheating process. However, such abrupt
increase is unrealistic and may be considered as outliers in comparison with other
values. Similarly, for smaller values of re, the outcome is unpredictable and does not
provide stable or reliable solutions for every execution. The graph in Figure 9 shows
that the execution time does not increase much for the aforesaid chosen range of re
values (0.23-0.28). For re values more than 0.28, the reheating process increases
abruptly, leading to abrupt increase in the execution time, which is unwanted. Also, for
smaller re values, it is observed that the execution time is relatively high even though
no reheating takes place. This may be accounted for because the program tries to find
a better solution within the same search space as it is unable to satisfy the reheating
condition and increase the search domain.

The algorithm has been executed multiple times, changing the various parameters
and summarized in Table 3. It can be observed that the algorithm obtains the most
optimal solution for K=6,00,000, LP=20,000, and re=0.25. The profit, in this case, has
maximum improvement while the execution time is also rational. Both annealing and
reheating processes take place, enabling the algorithm to yield better results by
thoroughly exploring the problem's search space.

5. Conclusion
A shelf space allocation problem usually involves a large number of parameters.

Obtaining a reliable estimation of such parameters is generally challenging and time-
consuming; therefore, it is challenging to obtain fruitful solutions in real life. This paper's
proposed model is distinguishable by hyper-heuristics and the ability to solve more
extensive, more realistic sized instances. This model considers the second dimension
as height or stack coefficient instead of only considering the length facings of the items
and the third dimension, which is the shelves' height in a rack. Thus, this model can be
used to design layouts for the store to enable the retailer to maximize his profit.
Moreover, it applies a hyper-heuristics method to calculate the solution using the
process of simulated annealing. The algorithm used in this work is confined to shelf
space allocation problems and can be used to optimize any other allocation problem.
The paper tried to solve the problem of allocating shelf space by proposing a novel
approach.

This paper solves the optimization problem by converting a multi-objective
optimization into a single objective using the popular weighted sum technique. The
proposed model increases the retailer's profit subject to various objectives and
constraints. Analysis has been carried out thoroughly to determine the appropriate
values of the different parameters that are quintessential to determining the retailer's
profit with the aim of maximum utilization of shelf space. The weights of individual
parameters result from a systematic survey done using the transaction history of
various retailers. Moreover, the proposed model works on a hyper-heuristic algorithm
that can provide better results than traditional heuristics, which are generally applied
for optimization problems.

This work can be extended to include Pareto optimality to wholly implement multi-
objective optimization considering conflicting objectives such as retailers' investments,
human resources, etc. The model does not consider the effect of replenishment and
backroom on retail shelf space planning. Also, improvements may be made in the
probability selection of the neighborhood moves (hyper-heuristics). The selection of
the neighborhoods can be based on an online learning mechanism as that selection
process might provide a slightly better result for the instances. When implemented in
reality, this model will help in optimizing profit but may help in planning marketing
strategies and designing new store layouts.

Romit S. Beed, et al.

267

Fig. 6. Graph representing the average number of times annealing process takes
place by varying re values

Fig. 7. Graph representing the average number of times reheating process takes
place by varying re values

with an increase in the total number of iterations. However, it is also not feasible for
the process to iterate indefinitely as it takes more time to execute. The total number of
iterations highly influences the improvement in profit. After a certain number of
iterations, the profit stabilizes.

From figure 2, it can be inferred that when the number of iterations is very small
(K=4500 to 20,000), the improvement in profit is minimal. However, the graph in this
section linearly increases with increased iteration values. Between 80,000 to 2,50,000
the graph shows variability in profit improvement. The maximum profit is obtained
between iterations 3,00,000 to 4,00,000, after which the graph stabilizes at a slightly
lower profit value.

The algorithm analyses the problem space, trying to find better solutions controlled
by the number of iterations. In this paper, to estimate the most desirable learning
period, a range of different learning periods between 500 and 3,00,000 have been
considered. Within a learning period, the algorithm explores the different suggested
neighborhoods using either annealing or reheating process. Based on the
performance of each neighborhood, the weights associated with each heuristic move
are updated at the end of each learning period, and again, the learning period works
with those neighborhoods that are, in turn, selected based on their updated weights
(using a probability function). Thus, the learning period for a given iteration must not
be so small that there is no ample time for the process to learn about the problem. Also,
it should not, on the other hand, be so large as to prohibit the opportunities for the
algorithm to utilize the information gathered during the learning period.

Shows the graph for the learning period 20000, which has been used in the
implementation. For instance, observing the case of a minimum learning period, LP
=5000, as shown in figure 4, the number of variations in the graph for the same number
of total iterations is much less than that LP=20000. This proves that if the learning
period is too small, the algorithm fails to gather sufficient knowledge about the heuristic
moves whose performance is pivotal to determining the improvement in profit, which
again serves the whole work's primary objective.

Again, analyzing the algorithm by keeping the learning period as large as 1,50,000
shows that the graph in figure 5 is almost stable, with no considerable change. This
proves that although the algorithm gets a substantial amount of time to learn the search
space, the given iteration of 6,00,000, falls short of applying the knowledge gathered.
In other words, the neighborhoods' weights cannot get adequately updated at the end
of a learning period and then implemented in the next as most of the iterations are lost
while executing a single learning period. Analysis has been done by executing the
algorithm several times, and every time, it has shown similar results. The gradient
coloring schemes in the graphs in figure 3, 4, 5 shows the different executions wherein
the darkest shade stands for the first execution.

At each temperature, the algorithm iterates five times (nrep=5). On increasing the
temperature by reheating, it is intuitive that the program's execution time will increase.
Moreover, as the value of re affects the reheating and annealing process within the
algorithm, it indirectly affects the fitness value(profit). From the graphs in Figures 6 and
7, it is observed that with increasing non improving acceptance ratio values(re), the
average number of times annealing takes place steadily decreases after re =0.23, and
simultaneously the reheating process starts increasing from the same point. For re
value greater than 0.28, both the graphs show unpredictability. So, it may be
concluded from the two graphs that the value of re within range 0.23-0.28 results in
optimized solutions.

It can be inferred from Figure 8 that for the chosen range of re values (0.23 – 0.28),
the profit obtained is quite stable and obtained as a result of both annealing and
reheating. An abrupt increase in profit can be observed on increasing the re value,
which is marked by an abrupt increase in the reheating process. However, such abrupt
increase is unrealistic and may be considered as outliers in comparison with other
values. Similarly, for smaller values of re, the outcome is unpredictable and does not
provide stable or reliable solutions for every execution. The graph in Figure 9 shows
that the execution time does not increase much for the aforesaid chosen range of re
values (0.23-0.28). For re values more than 0.28, the reheating process increases
abruptly, leading to abrupt increase in the execution time, which is unwanted. Also, for
smaller re values, it is observed that the execution time is relatively high even though
no reheating takes place. This may be accounted for because the program tries to find
a better solution within the same search space as it is unable to satisfy the reheating
condition and increase the search domain.

The algorithm has been executed multiple times, changing the various parameters
and summarized in Table 3. It can be observed that the algorithm obtains the most
optimal solution for K=6,00,000, LP=20,000, and re=0.25. The profit, in this case, has
maximum improvement while the execution time is also rational. Both annealing and
reheating processes take place, enabling the algorithm to yield better results by
thoroughly exploring the problem's search space.

5. Conclusion
A shelf space allocation problem usually involves a large number of parameters.

Obtaining a reliable estimation of such parameters is generally challenging and time-
consuming; therefore, it is challenging to obtain fruitful solutions in real life. This paper's
proposed model is distinguishable by hyper-heuristics and the ability to solve more
extensive, more realistic sized instances. This model considers the second dimension
as height or stack coefficient instead of only considering the length facings of the items
and the third dimension, which is the shelves' height in a rack. Thus, this model can be
used to design layouts for the store to enable the retailer to maximize his profit.
Moreover, it applies a hyper-heuristics method to calculate the solution using the
process of simulated annealing. The algorithm used in this work is confined to shelf
space allocation problems and can be used to optimize any other allocation problem.
The paper tried to solve the problem of allocating shelf space by proposing a novel
approach.

This paper solves the optimization problem by converting a multi-objective
optimization into a single objective using the popular weighted sum technique. The
proposed model increases the retailer's profit subject to various objectives and
constraints. Analysis has been carried out thoroughly to determine the appropriate
values of the different parameters that are quintessential to determining the retailer's
profit with the aim of maximum utilization of shelf space. The weights of individual
parameters result from a systematic survey done using the transaction history of
various retailers. Moreover, the proposed model works on a hyper-heuristic algorithm
that can provide better results than traditional heuristics, which are generally applied
for optimization problems.

This work can be extended to include Pareto optimality to wholly implement multi-
objective optimization considering conflicting objectives such as retailers' investments,
human resources, etc. The model does not consider the effect of replenishment and
backroom on retail shelf space planning. Also, improvements may be made in the
probability selection of the neighborhood moves (hyper-heuristics). The selection of
the neighborhoods can be based on an online learning mechanism as that selection
process might provide a slightly better result for the instances. When implemented in
reality, this model will help in optimizing profit but may help in planning marketing
strategies and designing new store layouts.

with an increase in the total number of iterations. However, it is also not feasible for
the process to iterate indefinitely as it takes more time to execute. The total number of
iterations highly influences the improvement in profit. After a certain number of
iterations, the profit stabilizes.

From figure 2, it can be inferred that when the number of iterations is very small
(K=4500 to 20,000), the improvement in profit is minimal. However, the graph in this
section linearly increases with increased iteration values. Between 80,000 to 2,50,000
the graph shows variability in profit improvement. The maximum profit is obtained
between iterations 3,00,000 to 4,00,000, after which the graph stabilizes at a slightly
lower profit value.

The algorithm analyses the problem space, trying to find better solutions controlled
by the number of iterations. In this paper, to estimate the most desirable learning
period, a range of different learning periods between 500 and 3,00,000 have been
considered. Within a learning period, the algorithm explores the different suggested
neighborhoods using either annealing or reheating process. Based on the
performance of each neighborhood, the weights associated with each heuristic move
are updated at the end of each learning period, and again, the learning period works
with those neighborhoods that are, in turn, selected based on their updated weights
(using a probability function). Thus, the learning period for a given iteration must not
be so small that there is no ample time for the process to learn about the problem. Also,
it should not, on the other hand, be so large as to prohibit the opportunities for the
algorithm to utilize the information gathered during the learning period.

Shows the graph for the learning period 20000, which has been used in the
implementation. For instance, observing the case of a minimum learning period, LP
=5000, as shown in figure 4, the number of variations in the graph for the same number
of total iterations is much less than that LP=20000. This proves that if the learning
period is too small, the algorithm fails to gather sufficient knowledge about the heuristic
moves whose performance is pivotal to determining the improvement in profit, which
again serves the whole work's primary objective.

Again, analyzing the algorithm by keeping the learning period as large as 1,50,000
shows that the graph in figure 5 is almost stable, with no considerable change. This
proves that although the algorithm gets a substantial amount of time to learn the search
space, the given iteration of 6,00,000, falls short of applying the knowledge gathered.
In other words, the neighborhoods' weights cannot get adequately updated at the end
of a learning period and then implemented in the next as most of the iterations are lost
while executing a single learning period. Analysis has been done by executing the
algorithm several times, and every time, it has shown similar results. The gradient
coloring schemes in the graphs in figure 3, 4, 5 shows the different executions wherein
the darkest shade stands for the first execution.

At each temperature, the algorithm iterates five times (nrep=5). On increasing the
temperature by reheating, it is intuitive that the program's execution time will increase.
Moreover, as the value of re affects the reheating and annealing process within the
algorithm, it indirectly affects the fitness value(profit). From the graphs in Figures 6 and
7, it is observed that with increasing non improving acceptance ratio values(re), the
average number of times annealing takes place steadily decreases after re =0.23, and
simultaneously the reheating process starts increasing from the same point. For re
value greater than 0.28, both the graphs show unpredictability. So, it may be
concluded from the two graphs that the value of re within range 0.23-0.28 results in
optimized solutions.

It can be inferred from Figure 8 that for the chosen range of re values (0.23 – 0.28),
the profit obtained is quite stable and obtained as a result of both annealing and
reheating. An abrupt increase in profit can be observed on increasing the re value,
which is marked by an abrupt increase in the reheating process. However, such abrupt
increase is unrealistic and may be considered as outliers in comparison with other
values. Similarly, for smaller values of re, the outcome is unpredictable and does not
provide stable or reliable solutions for every execution. The graph in Figure 9 shows
that the execution time does not increase much for the aforesaid chosen range of re
values (0.23-0.28). For re values more than 0.28, the reheating process increases
abruptly, leading to abrupt increase in the execution time, which is unwanted. Also, for
smaller re values, it is observed that the execution time is relatively high even though
no reheating takes place. This may be accounted for because the program tries to find
a better solution within the same search space as it is unable to satisfy the reheating
condition and increase the search domain.

The algorithm has been executed multiple times, changing the various parameters
and summarized in Table 3. It can be observed that the algorithm obtains the most
optimal solution for K=6,00,000, LP=20,000, and re=0.25. The profit, in this case, has
maximum improvement while the execution time is also rational. Both annealing and
reheating processes take place, enabling the algorithm to yield better results by
thoroughly exploring the problem's search space.

5. Conclusion
A shelf space allocation problem usually involves a large number of parameters.

Obtaining a reliable estimation of such parameters is generally challenging and time-
consuming; therefore, it is challenging to obtain fruitful solutions in real life. This paper's
proposed model is distinguishable by hyper-heuristics and the ability to solve more
extensive, more realistic sized instances. This model considers the second dimension
as height or stack coefficient instead of only considering the length facings of the items
and the third dimension, which is the shelves' height in a rack. Thus, this model can be
used to design layouts for the store to enable the retailer to maximize his profit.
Moreover, it applies a hyper-heuristics method to calculate the solution using the
process of simulated annealing. The algorithm used in this work is confined to shelf
space allocation problems and can be used to optimize any other allocation problem.
The paper tried to solve the problem of allocating shelf space by proposing a novel
approach.

This paper solves the optimization problem by converting a multi-objective
optimization into a single objective using the popular weighted sum technique. The
proposed model increases the retailer's profit subject to various objectives and
constraints. Analysis has been carried out thoroughly to determine the appropriate
values of the different parameters that are quintessential to determining the retailer's
profit with the aim of maximum utilization of shelf space. The weights of individual
parameters result from a systematic survey done using the transaction history of
various retailers. Moreover, the proposed model works on a hyper-heuristic algorithm
that can provide better results than traditional heuristics, which are generally applied
for optimization problems.

This work can be extended to include Pareto optimality to wholly implement multi-
objective optimization considering conflicting objectives such as retailers' investments,
human resources, etc. The model does not consider the effect of replenishment and
backroom on retail shelf space planning. Also, improvements may be made in the
probability selection of the neighborhood moves (hyper-heuristics). The selection of
the neighborhoods can be based on an online learning mechanism as that selection
process might provide a slightly better result for the instances. When implemented in
reality, this model will help in optimizing profit but may help in planning marketing
strategies and designing new store layouts.

Azerbaijan Journal of High Performance Computing, 3 (2), 2020

268

with an increase in the total number of iterations. However, it is also not feasible for
the process to iterate indefinitely as it takes more time to execute. The total number of
iterations highly influences the improvement in profit. After a certain number of
iterations, the profit stabilizes.

From figure 2, it can be inferred that when the number of iterations is very small
(K=4500 to 20,000), the improvement in profit is minimal. However, the graph in this
section linearly increases with increased iteration values. Between 80,000 to 2,50,000
the graph shows variability in profit improvement. The maximum profit is obtained
between iterations 3,00,000 to 4,00,000, after which the graph stabilizes at a slightly
lower profit value.

The algorithm analyses the problem space, trying to find better solutions controlled
by the number of iterations. In this paper, to estimate the most desirable learning
period, a range of different learning periods between 500 and 3,00,000 have been
considered. Within a learning period, the algorithm explores the different suggested
neighborhoods using either annealing or reheating process. Based on the
performance of each neighborhood, the weights associated with each heuristic move
are updated at the end of each learning period, and again, the learning period works
with those neighborhoods that are, in turn, selected based on their updated weights
(using a probability function). Thus, the learning period for a given iteration must not
be so small that there is no ample time for the process to learn about the problem. Also,
it should not, on the other hand, be so large as to prohibit the opportunities for the
algorithm to utilize the information gathered during the learning period.

Shows the graph for the learning period 20000, which has been used in the
implementation. For instance, observing the case of a minimum learning period, LP
=5000, as shown in figure 4, the number of variations in the graph for the same number
of total iterations is much less than that LP=20000. This proves that if the learning
period is too small, the algorithm fails to gather sufficient knowledge about the heuristic
moves whose performance is pivotal to determining the improvement in profit, which
again serves the whole work's primary objective.

Again, analyzing the algorithm by keeping the learning period as large as 1,50,000
shows that the graph in figure 5 is almost stable, with no considerable change. This
proves that although the algorithm gets a substantial amount of time to learn the search
space, the given iteration of 6,00,000, falls short of applying the knowledge gathered.
In other words, the neighborhoods' weights cannot get adequately updated at the end
of a learning period and then implemented in the next as most of the iterations are lost
while executing a single learning period. Analysis has been done by executing the
algorithm several times, and every time, it has shown similar results. The gradient
coloring schemes in the graphs in figure 3, 4, 5 shows the different executions wherein
the darkest shade stands for the first execution.

At each temperature, the algorithm iterates five times (nrep=5). On increasing the
temperature by reheating, it is intuitive that the program's execution time will increase.
Moreover, as the value of re affects the reheating and annealing process within the
algorithm, it indirectly affects the fitness value(profit). From the graphs in Figures 6 and
7, it is observed that with increasing non improving acceptance ratio values(re), the
average number of times annealing takes place steadily decreases after re =0.23, and
simultaneously the reheating process starts increasing from the same point. For re
value greater than 0.28, both the graphs show unpredictability. So, it may be
concluded from the two graphs that the value of re within range 0.23-0.28 results in
optimized solutions.

It can be inferred from Figure 8 that for the chosen range of re values (0.23 – 0.28),
the profit obtained is quite stable and obtained as a result of both annealing and
reheating. An abrupt increase in profit can be observed on increasing the re value,
which is marked by an abrupt increase in the reheating process. However, such abrupt
increase is unrealistic and may be considered as outliers in comparison with other
values. Similarly, for smaller values of re, the outcome is unpredictable and does not
provide stable or reliable solutions for every execution. The graph in Figure 9 shows
that the execution time does not increase much for the aforesaid chosen range of re
values (0.23-0.28). For re values more than 0.28, the reheating process increases
abruptly, leading to abrupt increase in the execution time, which is unwanted. Also, for
smaller re values, it is observed that the execution time is relatively high even though
no reheating takes place. This may be accounted for because the program tries to find
a better solution within the same search space as it is unable to satisfy the reheating
condition and increase the search domain.

The algorithm has been executed multiple times, changing the various parameters
and summarized in Table 3. It can be observed that the algorithm obtains the most
optimal solution for K=6,00,000, LP=20,000, and re=0.25. The profit, in this case, has
maximum improvement while the execution time is also rational. Both annealing and
reheating processes take place, enabling the algorithm to yield better results by
thoroughly exploring the problem's search space.

5. Conclusion
A shelf space allocation problem usually involves a large number of parameters.

Obtaining a reliable estimation of such parameters is generally challenging and time-
consuming; therefore, it is challenging to obtain fruitful solutions in real life. This paper's
proposed model is distinguishable by hyper-heuristics and the ability to solve more
extensive, more realistic sized instances. This model considers the second dimension
as height or stack coefficient instead of only considering the length facings of the items
and the third dimension, which is the shelves' height in a rack. Thus, this model can be
used to design layouts for the store to enable the retailer to maximize his profit.
Moreover, it applies a hyper-heuristics method to calculate the solution using the
process of simulated annealing. The algorithm used in this work is confined to shelf
space allocation problems and can be used to optimize any other allocation problem.
The paper tried to solve the problem of allocating shelf space by proposing a novel
approach.

This paper solves the optimization problem by converting a multi-objective
optimization into a single objective using the popular weighted sum technique. The
proposed model increases the retailer's profit subject to various objectives and
constraints. Analysis has been carried out thoroughly to determine the appropriate
values of the different parameters that are quintessential to determining the retailer's
profit with the aim of maximum utilization of shelf space. The weights of individual
parameters result from a systematic survey done using the transaction history of
various retailers. Moreover, the proposed model works on a hyper-heuristic algorithm
that can provide better results than traditional heuristics, which are generally applied
for optimization problems.

This work can be extended to include Pareto optimality to wholly implement multi-
objective optimization considering conflicting objectives such as retailers' investments,
human resources, etc. The model does not consider the effect of replenishment and
backroom on retail shelf space planning. Also, improvements may be made in the
probability selection of the neighborhood moves (hyper-heuristics). The selection of
the neighborhoods can be based on an online learning mechanism as that selection
process might provide a slightly better result for the instances. When implemented in
reality, this model will help in optimizing profit but may help in planning marketing
strategies and designing new store layouts.

Fig. 8. Graph representing the change in average profit ratio with increasing re values.

Fig. 9. Graph representing the average execution time taken with increasing re values.

Romit S. Beed, et al.

269

with an increase in the total number of iterations. However, it is also not feasible for
the process to iterate indefinitely as it takes more time to execute. The total number of
iterations highly influences the improvement in profit. After a certain number of
iterations, the profit stabilizes.

From figure 2, it can be inferred that when the number of iterations is very small
(K=4500 to 20,000), the improvement in profit is minimal. However, the graph in this
section linearly increases with increased iteration values. Between 80,000 to 2,50,000
the graph shows variability in profit improvement. The maximum profit is obtained
between iterations 3,00,000 to 4,00,000, after which the graph stabilizes at a slightly
lower profit value.

The algorithm analyses the problem space, trying to find better solutions controlled
by the number of iterations. In this paper, to estimate the most desirable learning
period, a range of different learning periods between 500 and 3,00,000 have been
considered. Within a learning period, the algorithm explores the different suggested
neighborhoods using either annealing or reheating process. Based on the
performance of each neighborhood, the weights associated with each heuristic move
are updated at the end of each learning period, and again, the learning period works
with those neighborhoods that are, in turn, selected based on their updated weights
(using a probability function). Thus, the learning period for a given iteration must not
be so small that there is no ample time for the process to learn about the problem. Also,
it should not, on the other hand, be so large as to prohibit the opportunities for the
algorithm to utilize the information gathered during the learning period.

Shows the graph for the learning period 20000, which has been used in the
implementation. For instance, observing the case of a minimum learning period, LP
=5000, as shown in figure 4, the number of variations in the graph for the same number
of total iterations is much less than that LP=20000. This proves that if the learning
period is too small, the algorithm fails to gather sufficient knowledge about the heuristic
moves whose performance is pivotal to determining the improvement in profit, which
again serves the whole work's primary objective.

Again, analyzing the algorithm by keeping the learning period as large as 1,50,000
shows that the graph in figure 5 is almost stable, with no considerable change. This
proves that although the algorithm gets a substantial amount of time to learn the search
space, the given iteration of 6,00,000, falls short of applying the knowledge gathered.
In other words, the neighborhoods' weights cannot get adequately updated at the end
of a learning period and then implemented in the next as most of the iterations are lost
while executing a single learning period. Analysis has been done by executing the
algorithm several times, and every time, it has shown similar results. The gradient
coloring schemes in the graphs in figure 3, 4, 5 shows the different executions wherein
the darkest shade stands for the first execution.

At each temperature, the algorithm iterates five times (nrep=5). On increasing the
temperature by reheating, it is intuitive that the program's execution time will increase.
Moreover, as the value of re affects the reheating and annealing process within the
algorithm, it indirectly affects the fitness value(profit). From the graphs in Figures 6 and
7, it is observed that with increasing non improving acceptance ratio values(re), the
average number of times annealing takes place steadily decreases after re =0.23, and
simultaneously the reheating process starts increasing from the same point. For re
value greater than 0.28, both the graphs show unpredictability. So, it may be
concluded from the two graphs that the value of re within range 0.23-0.28 results in
optimized solutions.

It can be inferred from Figure 8 that for the chosen range of re values (0.23 – 0.28),
the profit obtained is quite stable and obtained as a result of both annealing and
reheating. An abrupt increase in profit can be observed on increasing the re value,
which is marked by an abrupt increase in the reheating process. However, such abrupt
increase is unrealistic and may be considered as outliers in comparison with other
values. Similarly, for smaller values of re, the outcome is unpredictable and does not
provide stable or reliable solutions for every execution. The graph in Figure 9 shows
that the execution time does not increase much for the aforesaid chosen range of re
values (0.23-0.28). For re values more than 0.28, the reheating process increases
abruptly, leading to abrupt increase in the execution time, which is unwanted. Also, for
smaller re values, it is observed that the execution time is relatively high even though
no reheating takes place. This may be accounted for because the program tries to find
a better solution within the same search space as it is unable to satisfy the reheating
condition and increase the search domain.

The algorithm has been executed multiple times, changing the various parameters
and summarized in Table 3. It can be observed that the algorithm obtains the most
optimal solution for K=6,00,000, LP=20,000, and re=0.25. The profit, in this case, has
maximum improvement while the execution time is also rational. Both annealing and
reheating processes take place, enabling the algorithm to yield better results by
thoroughly exploring the problem's search space.

5. Conclusion
A shelf space allocation problem usually involves a large number of parameters.

Obtaining a reliable estimation of such parameters is generally challenging and time-
consuming; therefore, it is challenging to obtain fruitful solutions in real life. This paper's
proposed model is distinguishable by hyper-heuristics and the ability to solve more
extensive, more realistic sized instances. This model considers the second dimension
as height or stack coefficient instead of only considering the length facings of the items
and the third dimension, which is the shelves' height in a rack. Thus, this model can be
used to design layouts for the store to enable the retailer to maximize his profit.
Moreover, it applies a hyper-heuristics method to calculate the solution using the
process of simulated annealing. The algorithm used in this work is confined to shelf
space allocation problems and can be used to optimize any other allocation problem.
The paper tried to solve the problem of allocating shelf space by proposing a novel
approach.

This paper solves the optimization problem by converting a multi-objective
optimization into a single objective using the popular weighted sum technique. The
proposed model increases the retailer's profit subject to various objectives and
constraints. Analysis has been carried out thoroughly to determine the appropriate
values of the different parameters that are quintessential to determining the retailer's
profit with the aim of maximum utilization of shelf space. The weights of individual
parameters result from a systematic survey done using the transaction history of
various retailers. Moreover, the proposed model works on a hyper-heuristic algorithm
that can provide better results than traditional heuristics, which are generally applied
for optimization problems.

This work can be extended to include Pareto optimality to wholly implement multi-
objective optimization considering conflicting objectives such as retailers' investments,
human resources, etc. The model does not consider the effect of replenishment and
backroom on retail shelf space planning. Also, improvements may be made in the
probability selection of the neighborhood moves (hyper-heuristics). The selection of
the neighborhoods can be based on an online learning mechanism as that selection
process might provide a slightly better result for the instances. When implemented in
reality, this model will help in optimizing profit but may help in planning marketing
strategies and designing new store layouts.

Table 3: Comparison of performance of algorithm depending on different values of itera-
tions(k), learning period(LP), and non-improving acceptance ratio(re)

K LP r e

In
iti

al
 P

ro
fit

Fi
na

l P
ro

fit

Im
pr

ov
em

en
t

An
ne

al
in

g

Re
he

at
in

g

Ex
ec

ut
io

n
Ti

m
e

4,500 1,125 0.08 32,107.14 35,481.01 3,373.87 900 - 5,525
20,000 5,000 0.08 33,068.91 41,611.76 8,542.85 4,000 - 23,147
100,000 25,000 0.08 29,844.89 40,165.82 10,320.93 20,000 - 118,180
300,000 75,000 0.08 34,131.41 47,322.70 13,191.28 60,000 - 318,640
450,000 112,500 0.08 33,211.78 47,755.21 14,543.43 90,000 - 502,185
525,000 131,250 0.08 32,572.58 45,609.31 13,036.74 105,000 - 58,228
580,000 145,000 0.08 33,463.30 44,829.86 11,366.56 16,000 - 540,236
600,000 150,000 0.08 32,946.95 47,768.38 14,821.43 20,000 - 671,459
600,000 5,000 0.08 31,486.47 46,491.25 15,004.78 20,000 - 561,561
600,000 20,000 0.08 36,221.32 46,048.99 9,827.67 20,000 - 528,742
600,000 75,000 0.08 29,967.24 45,274.86 15,307.62 120,000 - 671,804
600,000 150,000 0.08 32,552.15 46,377.38 13,825.23 120,000 - 573,000
600,000 20,000 0.10 31,875.67 46,643.73 14,768.06 120,000 - 554,845
600,000 20,000 0.20 33,564.30 45,042.11 11,477.81 120,000 - 607,424
600,000 20,000 0.25 31,710.37 48,279.44 16,569.07 119,999 9 529,692
600,000 20,000 0.27 32,042.85 48,000.70 15,957.85 119,938 340 527,931
600,000 20,000 0.30 28,266.87 46,651.72 18,384.85 119,944 327 659,856
600,000 20,000 0.40 34,076.49 44,884.43 10,807.93 119,920 453 723,050

Azerbaijan Journal of High Performance Computing, 3 (2), 2020

270

with an increase in the total number of iterations. However, it is also not feasible for
the process to iterate indefinitely as it takes more time to execute. The total number of
iterations highly influences the improvement in profit. After a certain number of
iterations, the profit stabilizes.

From figure 2, it can be inferred that when the number of iterations is very small
(K=4500 to 20,000), the improvement in profit is minimal. However, the graph in this
section linearly increases with increased iteration values. Between 80,000 to 2,50,000
the graph shows variability in profit improvement. The maximum profit is obtained
between iterations 3,00,000 to 4,00,000, after which the graph stabilizes at a slightly
lower profit value.

The algorithm analyses the problem space, trying to find better solutions controlled
by the number of iterations. In this paper, to estimate the most desirable learning
period, a range of different learning periods between 500 and 3,00,000 have been
considered. Within a learning period, the algorithm explores the different suggested
neighborhoods using either annealing or reheating process. Based on the
performance of each neighborhood, the weights associated with each heuristic move
are updated at the end of each learning period, and again, the learning period works
with those neighborhoods that are, in turn, selected based on their updated weights
(using a probability function). Thus, the learning period for a given iteration must not
be so small that there is no ample time for the process to learn about the problem. Also,
it should not, on the other hand, be so large as to prohibit the opportunities for the
algorithm to utilize the information gathered during the learning period.

Shows the graph for the learning period 20000, which has been used in the
implementation. For instance, observing the case of a minimum learning period, LP
=5000, as shown in figure 4, the number of variations in the graph for the same number
of total iterations is much less than that LP=20000. This proves that if the learning
period is too small, the algorithm fails to gather sufficient knowledge about the heuristic
moves whose performance is pivotal to determining the improvement in profit, which
again serves the whole work's primary objective.

Again, analyzing the algorithm by keeping the learning period as large as 1,50,000
shows that the graph in figure 5 is almost stable, with no considerable change. This
proves that although the algorithm gets a substantial amount of time to learn the search
space, the given iteration of 6,00,000, falls short of applying the knowledge gathered.
In other words, the neighborhoods' weights cannot get adequately updated at the end
of a learning period and then implemented in the next as most of the iterations are lost
while executing a single learning period. Analysis has been done by executing the
algorithm several times, and every time, it has shown similar results. The gradient
coloring schemes in the graphs in figure 3, 4, 5 shows the different executions wherein
the darkest shade stands for the first execution.

At each temperature, the algorithm iterates five times (nrep=5). On increasing the
temperature by reheating, it is intuitive that the program's execution time will increase.
Moreover, as the value of re affects the reheating and annealing process within the
algorithm, it indirectly affects the fitness value(profit). From the graphs in Figures 6 and
7, it is observed that with increasing non improving acceptance ratio values(re), the
average number of times annealing takes place steadily decreases after re =0.23, and
simultaneously the reheating process starts increasing from the same point. For re
value greater than 0.28, both the graphs show unpredictability. So, it may be
concluded from the two graphs that the value of re within range 0.23-0.28 results in
optimized solutions.

It can be inferred from Figure 8 that for the chosen range of re values (0.23 – 0.28),
the profit obtained is quite stable and obtained as a result of both annealing and
reheating. An abrupt increase in profit can be observed on increasing the re value,
which is marked by an abrupt increase in the reheating process. However, such abrupt
increase is unrealistic and may be considered as outliers in comparison with other
values. Similarly, for smaller values of re, the outcome is unpredictable and does not
provide stable or reliable solutions for every execution. The graph in Figure 9 shows
that the execution time does not increase much for the aforesaid chosen range of re
values (0.23-0.28). For re values more than 0.28, the reheating process increases
abruptly, leading to abrupt increase in the execution time, which is unwanted. Also, for
smaller re values, it is observed that the execution time is relatively high even though
no reheating takes place. This may be accounted for because the program tries to find
a better solution within the same search space as it is unable to satisfy the reheating
condition and increase the search domain.

The algorithm has been executed multiple times, changing the various parameters
and summarized in Table 3. It can be observed that the algorithm obtains the most
optimal solution for K=6,00,000, LP=20,000, and re=0.25. The profit, in this case, has
maximum improvement while the execution time is also rational. Both annealing and
reheating processes take place, enabling the algorithm to yield better results by
thoroughly exploring the problem's search space.

5. Conclusion
A shelf space allocation problem usually involves a large number of parameters.

Obtaining a reliable estimation of such parameters is generally challenging and time-
consuming; therefore, it is challenging to obtain fruitful solutions in real life. This paper's
proposed model is distinguishable by hyper-heuristics and the ability to solve more
extensive, more realistic sized instances. This model considers the second dimension
as height or stack coefficient instead of only considering the length facings of the items
and the third dimension, which is the shelves' height in a rack. Thus, this model can be
used to design layouts for the store to enable the retailer to maximize his profit.
Moreover, it applies a hyper-heuristics method to calculate the solution using the
process of simulated annealing. The algorithm used in this work is confined to shelf
space allocation problems and can be used to optimize any other allocation problem.
The paper tried to solve the problem of allocating shelf space by proposing a novel
approach.

This paper solves the optimization problem by converting a multi-objective
optimization into a single objective using the popular weighted sum technique. The
proposed model increases the retailer's profit subject to various objectives and
constraints. Analysis has been carried out thoroughly to determine the appropriate
values of the different parameters that are quintessential to determining the retailer's
profit with the aim of maximum utilization of shelf space. The weights of individual
parameters result from a systematic survey done using the transaction history of
various retailers. Moreover, the proposed model works on a hyper-heuristic algorithm
that can provide better results than traditional heuristics, which are generally applied
for optimization problems.

This work can be extended to include Pareto optimality to wholly implement multi-
objective optimization considering conflicting objectives such as retailers' investments,
human resources, etc. The model does not consider the effect of replenishment and
backroom on retail shelf space planning. Also, improvements may be made in the
probability selection of the neighborhood moves (hyper-heuristics). The selection of
the neighborhoods can be based on an online learning mechanism as that selection
process might provide a slightly better result for the instances. When implemented in
reality, this model will help in optimizing profit but may help in planning marketing
strategies and designing new store layouts.

References
Aarts, E., Korst, J., & Michiels, W. (2005). Simulated annealing. In Search Method-

ologies (pp. 187-210). Springer, Boston, MA.
Bingüler, H. E., Bulkan, S., & Ağaoğlu, M. (2016). A heuristic approach for a shelf

space allocation problem. Journal of Management and Information Science, 4(1), 38-
44.

Corstjens, M., & Doyle, P. (1981). A model for optimizing retail space alloca-
tions. Management Science, 27(7), 822-833.

Cox, K. K. (1970). The effect of shelf space upon sales of branded products. Jour-
nal of Marketing Research, 7(1), 55-58.

Curhan, R. C. (1972). The relationship between shelf space and unit sales in super-
markets. Journal of Marketing Research, 9(4), 406-412.

Goldberg DE (1989) Genetic Algorithm in Search, Optimization, and Machine
Learning Addison-Wesley publishing company, INC.

Deb, K. (1998, January). Genetic algorithm in search and optimization: The tech-
nique and applications. In Proceedings of International Workshop on Soft Computing
and Intelligent Systems (pp. 58-87). Machine Intelligence Unit, Indian Statistical Insti-
tute Calcutta, India.

Dreze, X., Hoch, S. J., & Purk, M. E. (1994). Shelf management and space elastici-
ty. Journal of Retailing, 70(4), 301-326.

Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts and techniques. El-
sevier.

Romit S. Beed, et al.

271

Haupt, R. L., & Ellen Haupt, S. (2004). Practical genetic algorithms. John Wiley &
Soons.

Hwang, H., Choi, B., & Lee, M. J. (2005). A model for shelf space allocation and
inventory control considering location and inventory level effects on demand. Interna-
tional Journal of Production Economics, 97(2), 185-195.

Jubril, A. M. (2012). A nonlinear weights selection in weighted sum for convex mul-
tiobjective optimization. Facta Universitatis, 27(3), 357-372.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated an-
nealing. Science, 220(4598), 671-680.

Konak, A., Coit, D. W., & Smith, A. E. (2006). Multi-objective optimization using ge-
netic algorithms: A tutorial. Reliability Engineering & System Safety, 91(9), 992-1007.

Kotzan, J. A., & Evanson, R. V. (1969). Responsiveness of drug store sales to shelf
space allocations. Journal of Marketing Research, 6(4), 465-469.

Laarhoven, P. J. M., Aarts, E. H. L., Lenstra, J. K. (1992). Job shop scheduling by
simulated annealing. Operations Research, 40(1), 113-125.

Murray, C. C., Talukdar, D., & Gosavi, A. (2010). Joint optimization of product price,
display orientation and shelf-space allocation in retail category management. Journal
of Retailing, 86(2), 125-136.

Ombuki, B., Ross, B. J., & Hanshar, F. (2006). Multi-objective genetic algorithms for
vehicle routing problem with time windows. Applied Intelligence, 24(1), 17-30.

Russell, R. A., & Urban, T. L. (2010). The location and allocation of products and
product families on retail shelves. Annals of Operations Research, 179(1), 131-147.

Wang, Z., Geng, X., & Shao, Z. (2009). An effective simulated annealing algorithm
for solving the traveling salesman problem. Journal of Computational and Theoretical
Nanoscience, 6(7), 1680-1686.

Yang, M. H., & Chen, W. C. (1999). A study on shelf space allocation and manage-
ment. International Journal of Production Economics, 60, 309-317.

Zadeh, L. (1963). Optimality and non-scalar-valued performance criteria. IEEE
Transactions on Automatic Control, 8(1), 59-60.

Submitted: 26.08.2020
Accepted: 27.11.2020

Azerbaijan Journal of High Performance Computing, 3 (2), 2020

